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A model for random finite sequences

Finite sequences of words
e Let D be a finite dictionary,

e and DT = U;’il D7 the set of all finite sequences of words of
positive length.
e Let € be the empty sequence (of length zero),

e and D* = Dt U{e} the set of finite sequences, including the
empty one.

v

A random sentence
We will present a model
e for random finite sequences,

e that is a family of probability measures included in
ML(DT), the set of probability measures on DT.




Markov substitute sets

A string distribution
e Let 2 C D' be a domain,
o and P € /(%) a probability distribution on 2.

o Let v be the concatenation operator.

Definition (Markov substitute sets)

A set B C DT is a Markov substitute set of P if and only if

o there exists a function §: B x B — R, that we will call the

substitute exponent, such that
e for any context (z,z) € (D*)Q,
o for any couple of expressions (y,y’) € B2,

e such that (y(z,y,2),v(z,v,2)) € 92,

P(y(z,y',2)) = P(v(z,y,2)) exp(B(y, y))-




Properties of the substitute exponent

Symmetry and independence from B

e Since P(y(z,y',2)) = P(v(z,y,2)) exp(B(y,y’)), the
substitute exponent is skew-symmetric:

By y)=—B(y,y).

@ The substitute exponent does not depend on B : if
{y,y'} C BN B’, two Markov substitute sets, then we can
take the same value of 3(y,y’) to describe the substitute
property in B and in B’.




First properties

Proposition (Crossing-over does not change the likelihood)
o For any Markov substitute set B of P € .4} (2),
e for any two contexts (11,21), (22, 22) € (D*)Q,
e and any pair y1,y2 € B,
o such that v(z;,yj,2) € 2,1 <i1<2,1<j<2,

P(y(w1,91,2)) P (v (22, Y2, 22))
= P(v(z1,92,2)) P (v(22, 91, 2))




Elementary properties of substitute sets

Pairs are sufficient
@ A subset of a Markov substitute set is itself a Markov
substitute set,

e The set B C DT is a Markov substitute set if and only if

any pair {y,y'} C B is a Markov substitute set,

e If B is a Markov subsitute set and (z,z) € (D*)2 is a

context, then

def
v(@, B,2) ¥ {1(z,9,2) : y € B}

is also a Markov substitute set.




Substitute sets as syntax labels

Decomposition of a sentence likelihood
e When B is a Markov substitute set
e and the context (z,z) € (D*)2 is such that v(z, B, z) C 2,

e the likelihood of a sequence 7(z,y, 2) decomposes into

P(y(z,y,2)) = P(y(z,B,2))qB(y),  ye€B,

@ where ¢p, the substitute measure of B is defined as

exp(B(y/,y))
> exp(B(y, "))

y"’eB

qp(y) =

9

this definition being independent of the choice of 3’ € B.




Substitute sets as syntax labels

Syntax labels

@ Due to the decomposition

P(y(z,y,2)) = P(y(z,B,2))qs(y), y€B,

the substitute set B behaves as a syntax label /g,

the likelihood of v(z,y, z) being deduced from

the likelihood of the syntactic construction ~y(z,¢p, z)
and the likelihood ¢p(y)

o of the rewriting rule {5 — ¥,

Multiple parsings

e but the parsing of v(z,y,z’) into vy(z,¢p,2") may not be
unique.




The set of #8-Markov probability measures

Model definition

e For any given finite family 2 of finite subsets of DT,
for any domain 2 C DT,
the probability measure P € .} (2)

is said to be a B-Markov probability measure on &,

if and only if all sets B € # are Markov substitute sets of
P.

The notation M (2, A) will stand for the set of B-Markov
probability measures on the domain 2.




Substitute Markov models in action

A training sample

[0 He is a clever guy .

[0 He is doing some shopping .

[0 He is laughing .

[0 He is not interested in sports .
[0 He is walking .

[0 He likes to walk in the streets .
[0 I am driving a car .

[0 I am riding a horse too .

[0 I am running .

[0 Paul is crossing the street .

[0 Paul is driving a car .

[0 Paul is riding a horse .

[0 Paul is walking .

[0 Peter is walking .

[0 While I was walking , I saw Paul crossing the street




Syntax rules, inferred from the training sample

[o
[o
[o
[o
[o
[o
[o
[0
[o
[o
[o
[o
[o
[o
[o
[o
[o
[1
[1

He likes to walk 16 13 streets .
11 18 clever guy .

11 doing some shopping .

11 laughing .

J1 not interested ]6 sports .

J1 riding 18 horse .

J1 riding 18 horse ]2 .

11 running .

17 am 15 .

Paul is 15 .

He is 15 .

J1 crossing ]3 street .

]J1 driving ]8 car .

14 is 15 .

11 walking .

Peter is ]5 .

While 17 was 15 , 17 saw 14 15 .
He is

Peter is




Syntax rules, inferred from the training sample

[1 While ]7 was 15 , 17 saw J]4
(117 am

[1 Paul is

[2 too

[3 the

[4 Paul

[4 Peter

[5 crossing 13 street

[6 driving 18 car

[5 riding 18 horse

[5 walking

[5 15 too

[5 18 clever guy

[5 doing some shopping

[5 laughing

[5 not interested ]6 sports
[5 running

[6 in

71

[8 a




New sentences discovered

[0 Paul is driving a car too .
[0 Paul is doing some shopping .
[0 Paul is laughing .

[0 Paul is riding a horse too .
[0 Paul is running too .

[0 Paul is running .

[0 Paul is not interested in sports too .
[0 Paul is not interested in sports .
[0 Paul is a clever guy too .

[0 Paul is a clever guy .

[0 Paul is walking too .

[0 Peter is driving a car too .

[0 Peter is driving a car .

[0 Peter is doing some shopping .

[0 Peter is laughing .

[0 Peter is riding a horse too .

[0 Peter is riding a horse .

[0 Peter is running too .

[0 Peter is running .

[0 Peter is not interested in sports .




New sentences discovered

[0 Peter is a clever guy .

[0 Peter is crossing the street
[0 He is driving a car too .

[0 He is driving a car .

[0 He is riding a horse too .
[0 He is riding a horse .

[0 He is running too .

[0 He is running .

[0 He is not interested in sports too .
[0 He is crossing the street too .
[0 He is crossing the street

[0 He is walking too .
[0 I am driving a car too .
[0 I am doing some shopping .
[0 I am laughing too .
[0 I am laughing .
[0 I am riding a horse .
[0 I am not interested in sports
[0 I am a clever guy .
[0 I am crossing the street too .
[0 I am crossing the street .
[0 I am walking too .
I

[0 I am walking .




New sentences discovered

[0 While I was driving a car , I saw Paul doing some shopping too .
[0 While I was driving a car , I saw Paul doing some shopping .

[0 While I was driving a car , I saw Paul riding a horse .

[0 While I was driving a car , I saw Paul crossing the street

[0 While I was driving a car , I saw Paul walking .

[0 While I was driving a car , I saw Peter riding a horse .

[0 While I was doing some shopping , I saw Paul riding a horse

[0 While I was doing some shopping , I saw Paul walking .

[0 While I was laughing too , I saw Peter crossing the street

[0 While I was laughing , I saw Peter riding a horse .

[0 While I was riding a horse , I saw Paul driving a car too .

[0 While I was riding a horse , I saw Paul driving a car .

[0 While I was riding a horse , I saw Paul laughing .

[0 While I was riding a horse , I saw Paul running .

[0 While I was riding a horse , I saw Paul walking .

[0 While I was riding a horse , I saw Peter not interested in sports .
[0 While I was running , I saw Paul laughing .




New sentences discovered

[0 While
[0 While

was walking ,
was walking ,

saw Peter not interested in sports
saw Peter walking .

[0 While I was running , I saw Paul not interested in sports
[0 While I was running , I saw Paul a clever guy .
[0 While I was running , I saw Paul walking .
[0 While I was not interested in sports , I saw Paul driving a car .
[0 While I was not interested in sports , I saw Paul riding a horse
[0 While I was a clever guy , I saw Paul running .
[0 While I was a clever guy , I saw Paul crossing the street
[0 While I was a clever guy , I saw Paul walking .
[0 While I was crossing the street , I saw Paul riding a horse
[0 While I was crossing the street , I saw Paul running .
[0 While I was crossing the street , I saw Paul crossing the street
[0 While I was crossing the street , I saw Paul walking .
[0 While I was crossing the street , I saw Peter walking .
[0 While I was walking , I saw Paul driving a car .
[0 While I was walking , I saw Paul laughing .
[0 While I was walking , I saw Paul riding a horse
[0 While I was walking , I saw Paul running .
[0 While I was walking , I saw Paul not interested in sports
[0 While I was walking , I saw Paul crossing the street too
[0 While I was walking , I saw Paul walking .
I I
I I




HB-Markov models form exponential families

also known as Gibbs measures

The substitute graph on ¥

9(2,%) = {(1(z,4,2):1(3,9',2)),
(z,2) € (D*)Z, (y,y') € B2, B ¢ %’}ﬂ(@ X D)

defines an equivalence relation ~4 on the domain 2.

e The components 7/~ 4 are the connected components of
the graph.

e The support of any P € IMM(Z,HA) is necessarily a union of
components: for some €p C I/~

supp(P)= |J C
Cesp




HB-Markov models form exponential families

also known as Gibbs measures

AB-Markov models with a given support

Conversely, for any € C Z/~g, the set My (2, PB) of B-Markov
probability measures with support |Jscy C is non-empty.




HB-Markov models form exponential families

also known as Gibbs measures

Independent Z-Markov processes
e Consider ¢ € //AJ ) such that r=1-¢(D) >0,

e and let P(w we D¥ ke IN\ {0}.

o Remark that P € SJT(D“‘,{supp( ).

e For any family % of subsets of DT, any domain 2 C DT,
any ¢ C 9/~g4, any probability measure p € 4} (%), the
probability P defined as

= Z 1(se C)u(C)P(s)/P(C), s € 2 belongs to
Ce®
My (D,B).




HB-Markov models form exponential families

also known as Gibbs measures

Active pairs

o Consider any domain 2 C DT and any family % c 27 N
e let & be a minimal set of pairs such that

M(2,B) =M(2,2), implying that D /~p =D/~ 2.
o Let € C Z/~4.
@ Define the set of active pairs

o = {{y,y'} € 2, for some x,z € D*, C €%,
Y@, {y,y'}2) € C}.

4




HB-Markov models form exponential families

also known as Gibbs measures

Free pairs and Gibbs measures
@ There is a nonempty subset .# C & of free pairs,
e and energy functions U; : Ugey C — R, where
1eS d:ef,g‘\u%, such that,

o defining Zg = Z Z exp (— Z Bi Ui(s)>.

Ceé seC €S
e and Pg(s) = Zglexp ( Z Bi Ui(s)>, s€ U C
€S Ce?
_ . B4
o My (2, B) = {Pﬁ.ﬁen{ , Z5 <oo},
e and such that moreover

(Pg = Pﬁ/ and Zg = Zﬂ/) — = ,8/.




HB-Markov models form exponential families

also known as Gibbs measures

Substitute exponents from temperature parameters
e For any i = {y,y'} € Z, where y < ¢/, B(y,v') = Bi,
e and for any j = {z,2'} € &\ .F, where z < 2/,

5(2,2/) = Z Bieij,
IEF

o for some matrix (e;;, i € F, j € o\ .F),

e while the substitute exponents for non active pairs in
P\ o can be set arbitrarily.




Some ideas from the proof: the loop constraint

e For any path (xp,...,2;) in the substitute graph ¥ (2, <),
there are pairs {y;,y;} € & such that one goes from z;_1 to
z; by changing y; into y;.

o Therefore, if P € My (2,A8),

k
P(ay,) = P(z1)exp (Zﬁ(ww}))
j=1

= P(l‘l)eXp<Z _IB(p) VP(IO""ka)>’

pESA

where
k

Voan,-a) = 310 > 97) = 1o < )] 1 (p = {34},

o We have to meet the constraint Y~ 8(p) V,(¢) =0 for all
peEA
¢ € £(€) the set of loops of ¢ included in the support of P.




The free pairs
o Let {V,,p € o/ \.Z} be a vector basis of
span{V, e R*%) p c o/}.

For any pe #, V, = — Z ep,q Vg, for some matrix e, 4,
qEI\TF

peEF qe A\ ZF.
The constraint writes as Z (ﬁq — Z /319 6p,q) Vy=

o
qEA\TF pEF
e and is equivalent to §, = Z Bpep,q, 4 € L\ F.
peF
e For any path 7y, , € 9(2,4), joining z¢c € C € € to z (so

that z € C), the energy function

Up(Tuc,z) = Vp(Tag,a) + Z ep,q Va(Tuc,z) = Up(z)
qeI\F

depends only on z, because Up,(¢) =0 on loops ¢ € £(%).




The Gibbs measure

e Therefore P(z)= P(z¢ exp< Z By Up )

pEF

= exp Z]l z € C)log(1/P(z¢)) Z/Bp
( CE%‘/—_/_/ pETF
=Uc(z) =Bc

:exp<— Z Bi Ui(z)

IECUF
e In this construction we get Zg = 1.

@ One can check that the converse is true:

if P(z)= Zg exp( Z Bi Ui( ),Where Zg < 00,

1ECUF
o then P € My (2,A8).

).




A toy example

Recursive structures are possible
o Let D=/{a,b,c}, 2=DT,
e and Z = {{a,ab},{c,bc}}.
e Consider C} = {ab"¢c,n € IN},
Coy = {b™cab™,(m,n) € N?},
C3 = {bFcab™cab™, (k,m,n) € N3}.
e Remark that C; € Dt /~g, 1 <5 <3.




The support may change the number of free pairs
(a,ab) (be,c)

,ab be, . .
e In (1, the loop ac 2% abe =¥ ac is the only constraint,

M,y (D, B) = { P, € ML(CY) :
P.(ab"c)=r(1—7)", nelN,rel0,1] }
o In (%, there is no loop constraint, so that
My (D, B) = {Pr1 € ML(C) :
Pri(b™cab™) =rt(1—r)"(1—1)",
(m,n) € N2, (r, 1) €]0,112}.
e In (3, the loop constraint is the same as in Cf, so that
M,y (DF,B) = { P, € ML(C5) -
P, (b¥cab™cab™) = r(1—r)ktmtn

(hmnwem{raQ1@.

v




The support may change the number of minimal pairs
o In m{o3}(D+,%), the set of substitute pairs 4 is minimal,
o whereas it is not in Mgy (D, %), indeed

M,y (D, B) = Mcy (D, {{a, ab}})
= f):R{C’l}(D—i—7 {{Cv bc}})

v




Relation with Markov chains

or more accurately with Markov random fields

Markov chains are Z-Markov processes
o Consider a finite dictionary D, the domain 2 = D*
e and the substitute sets & = {'y(a,D, b),(a,b) € DQ}.
The components of the state space are
Dl g = {fy(a,DL*Q,b) : (a,b) € DQ}.
The model M(DL, %) contains the law of all time

homogeneous Markov chains (S51,...,Sr) with positive
transition matrix M.




Relation with Markov chains

or more accurately with Markov random fields

Some ZA-Markov models are Markov random fields
o Conversely for any process S ~ P € M (D%, B),
e there is a time-homogeneous Markov chain (X7,...,X})
such that

e for any boundary conditions (a,b)? € D? such that
P(Sl =a,S5;= b) >0,

° IPSQ,...SL_1|81 = a,SL: b:IPXQ,...XL_l |X1 = a,XL: b
e Moreover, the marginal distribution of the pair (Si1,Sz) can
be arbitrary, while this is not the case for the distribution

of (Xl, XL).

o In other words, S is a one-dimensional Markov random
field.




Simulating a #-Markov process

Some Metropolis algorithm
o To simulate P € My (2, %), we need to know P(C),C €€
e and the substitute exponents, or equivalently P(y)/P(x)
for each (z,y) € 9(2,%).
e Let g(z,y) be a Markov kernel on Z x & such that
{(x,y) € P?: q(x,y) > O} =9(2,98) U{(w,m) 1z € .@}.
@ Choose z¢ € C, C € ¥, and define the Markov kernel

M(z,y) = q(z,y) (1/\m>, T#Yy€E9,

acceptance probability
M(z,z)=1— Z M(z,y).
Y yFT

e For any y in 9, P hm ZP C)M"(zc,y)
CE%”




Crossing-over dynamics

and the maximum likehood estimator

Replicated sample

o Consider some (deterministic) sample (z1,...,2,) € (D*)".

o Take m copies x1,...,2N, where N = nm.

o Let uy = |6 | Z Ozoo € ///1((D+) ) be the uniform
o6y

measure on the permutations of the replicated sample.

o Let p= 25% € /(D7) be the empirical measure of

z 1
the original sample.

e Remark that ppy is symmetric and consequently p-chaotic:

I&iinoo/SOl(xl)(pQ(x?)dMN(iﬁ,...xN) =
/801(I1)dp(x1)/@(Iz)dp(@).




Crossing-over dynamics

and the maximum likehood estimator

Conditions on the model

Consider a substitute model My (Z, %) such that

the domain contains the sample: {z;,1<i<n} C 2,

all members of substitute sets are present in the sample:
n

Z]l(y < ;) >0, for any y € B € %, where y < z means
i=1

that y is a subsequence of z, or in other words that for

some (a,b) € (D*)?2, z =~(a,y,b),

all components of the support are present in the sample:

¢={CeD/~g: CO{m,....;} #2}.




Crossing-over dynamics

and the maximum likehood estimator

Conditions on crossing-over dynamics

o Consider a Markov transition kernel Qy(z,v),z,y € 2V,
such that

QN {(7(617 b7 6)77((1/7 b/7 C,),$3,. . -axN);

(’7((1,b,,C),’}/(a/,b,Cl),ibg,...,iEN)} >0
for any (a,c) € (D*)?, {b,b'} C B € £ and (13,...,2y5) € Z,
@ @y is permutation invariant and symmetric:

QN(JJOO',yOO',) = QN(Iay) = QN(y7x)a for any
z,y € (DY)Y, and any 0,0’ € Gy,

@n is aperiodic, that will be the case for instance if
Qn(z,z) >0, for any z € 2.

N
Qn(z,y) >0 = > Ui(zj) = Ui(y;), i€ .

J=1 J=1




Crossing-over dynamics

and the maximum likehood estimator

Propagation of chaos

Consider the empirical measure

My - Z‘E.@ i—)MN 25%6%—%( )

1=1
Let vy r = pn Q]’f, be the marginal of the crossing-over
dynamics after k iterations,

Let vy = klim vN k. As Qp is symmetric, vy is the uniform
—00
measure on its support.

The law of the empirical measure my = vy o Mﬁl

converges towards the likelihood estimator: Nlim my = Om,
—00
n

where m =arg  max H P(z;).
PeMe (@,%‘) i=1

Moreover vy is m-chaotic.




Elements of proof

Some combinatorics

@ Since vy is uniform on its support and my = vy o Mﬁl,

N!
my(p) = Zy' s
[T (Np())!
zE€ED
xexp{N{H(p)— sup H(p’)] iclog(N)},
p Gsupp(mzv)
from Stirling’s formula, where H (p Z p(z)log(p

€D
is Shannon’s entropy.

e Moreover |supp(my)| < N1ZI,

e implying that lim my (arg max H(p)) = 1.
N—o0 pEsupp(my)




The limit support
o Consider
2= {57(a,b’,c) + 6r(at,5,¢) — Ox(a,b,¢) — Oy(at, b e
a,c,a’, ¢’ € D* {b,b’'} C B € A,
v(a,b,¢),v(a, b, c),y(a',b,c),y(a, b, ) € U‘f}
o Remark that

hm supp(mN {p+ Z ¢, a € IRQ} NAL(P) is
£e2
a convex set.

o Let m = arg maj(H(p). One can prove that supp(m) =%,

and that s
m(v(a,',¢)) _ m(y(d, ¥, ¢))
m(vy(a,b,c)) m(y(a',b,c))’

as in the definition of 2. This is a consequence of

H(m+af) =0, and implies that m € My (2, B).

under the same conditions

Oat|a=0




The maximum likelihood estimator

1 n
o Remark that / Ui(z)dm(z) = — Z xj i € &, since for
n :

anyﬁGQandaninf,/Uim d¢(z) =0

e As we have seen that m € My (2, B)
e we decuce that m is the maximum likelihood estimator of

the original sample (zi,...,z,),

m =arg  max H P(z;).
PEM4(2,P)




Convergence of the empirical measure

Since li H(p)) =1,

® Since lim my (argpesﬁ%gfm,\,) (p))
lim supp(my) = A and m = argmax H (p),
N —o0 peEA

e lim ]l(H(p) < H(m)—n) dmpy(p) =0, and
N—o00
consequently, H being strictly concave on A, a finite
dimensional convex set,

o lim [1 (]p— m| > 17) dmy(p) =0, n > 0, implying that
N—o0
limy 0o my = 0, and consequently that vy is m-chaotic.

lim /gol(m)cpg(xz)dVN(ﬂ?ly-'-xN) =

N—o00
[er@dm@) [ ea(odm(zy).




Conclusion

Summary

@ We have a parametric model for some probability ratios
m = exp(B(y,y))

e We get exponential families for any given support.

@ The number of parameters is related to linear loop
constraints.

e Crossing-over dynamics compute the maximum likelihood
estimator “automatically”, without requiring any explicit
estimate of the substitute exponents. )




Conclusion

Further questions

@ We can use Context Free Grammars to describe substitute
sets more efficiently.

e How can we compute an estimate of P(z) 7

e How to select the model, that is how to choose the family
A of substitute sets ?




