Markov substitute models, an alternative to hidden Markov models

OLIVIER CATONI Olivier.Catoni@ensae.fr

CREST, CNRS — UMR 9194 Université Paris–Saclay

Sequel seminar, — INRIA Lille June 9, 2017

Joint work with

Thomas Mainguy

Finite sequences of words

- Let D be a finite dictionary,
- and $D^+ = \bigcup_{j=1}^{\infty} D^j$ the set of all finite sequences of words of positive length.
- Let ε be the empty sequence (of length zero),
- and $D^* = D^+ \cup \{\varepsilon\}$ the set of finite sequences, including the empty one.

A random sentence

We will present a model

- for random finite sequences,
- that is a family of probability measures included in $\mathscr{M}^1_+(D^+)$, the set of probability measures on D^+ .

Markov substitute sets

A string distribution

- Let $\mathscr{D} \subset D^+$ be a domain,
- and $P \in \mathscr{M}^1_+(\mathscr{D})$ a probability distribution on \mathscr{D} .
- Let γ be the concatenation operator.

Definition (Markov substitute sets)

A set $B \subset D^+$ is a Markov substitute set of P if and only if

- there exists a function $\beta: B \times B \to \mathbb{R}$, that we will call the substitute exponent, such that
- for any context $(x,z) \in (D^*)^2$,
- for any couple of expressions $(y, y') \in B^2$,
- such that $(\gamma(x, y, z), \gamma(x, y', z)) \in \mathscr{D}^2$,

$$P(\gamma(x, y', z)) = P(\gamma(x, y, z)) \exp(\beta(y, y')).$$

Symmetry and independence from B

• Since $P(\gamma(x, y', z)) = P(\gamma(x, y, z)) \exp(\beta(y, y'))$, the substitute exponent is skew-symmetric:

$$\beta(y', y) = -\beta(y, y').$$

• The substitute exponent does not depend on B: if $\{y, y'\} \subset B \cap B'$, two Markov substitute sets, then we can take the same value of $\beta(y, y')$ to describe the substitute property in B and in B'.

Proposition (Crossing-over does not change the likelihood)

- For any Markov substitute set B of $P \in \mathscr{M}^1_+(\mathscr{D})$,
- for any two contexts $(x_1, z_1), (x_2, z_2) \in (D^*)^2$,
- and any pair $y_1, y_2 \in B$,
- such that $\gamma(x_i, y_j, z_i) \in \mathscr{D}, \ 1 \le i \le 2, 1 \le j \le 2$,

 $P(\gamma(x_1, y_1, z_1)) P(\gamma(x_2, y_2, z_2))$ = $P(\gamma(x_1, y_2, z_1)) P(\gamma(x_2, y_1, z_2))$

Pairs are sufficient

- A subset of a Markov substitute set is itself a Markov substitute set,
- The set B ⊂ D⁺ is a Markov substitute set if and only if any pair {y, y'} ⊂ B is a Markov substitute set,
- If B is a Markov subsitute set and $(x,z) \in (D^*)^2$ is a context, then

$$\gamma(x,B,z) \stackrel{\mathrm{def}}{=} \{\gamma(x,y,z) : y \in B\}$$

is also a Markov substitute set.

Decomposition of a sentence likelihood

- $\bullet\,$ When B is a Markov substitute set
- and the context $(x,z) \in (D^*)^2$ is such that $\gamma(x,B,z) \subset \mathscr{D}$,
- the likelihood of a sequence $\gamma(x, y, z)$ decomposes into

$$P(\gamma(x, y, z)) = P(\gamma(x, B, z))q_B(y), \qquad y \in B,$$

• where q_B , the substitute measure of B is defined as

$$q_B(y) = \frac{\exp(\beta(y', y))}{\sum_{y'' \in B} \exp(\beta(y', y''))},$$

this definition being independent of the choice of $y' \in B$.

Syntax labels

• Due to the decomposition

$$P(\gamma(x, y, z)) = P(\gamma(x, B, z))q_B(y), \quad y \in B,$$

- the substitute set B behaves as a syntax label ℓ_B ,
- the likelihood of $\gamma(x, y, z)$ being deduced from
- the likelihood of the syntactic construction $\gamma(x, \ell_B, z)$
- and the likelihood $q_B(y)$
- of the rewriting rule $\ell_B \to y$,

Multiple parsings

• but the parsing of $\gamma(x, y, x')$ into $\gamma(x, \ell_B, x')$ may not be unique.

Model definition

- For any given finite family \mathscr{B} of finite subsets of D^+ ,
- for any domain $\mathscr{D} \subset D^+$,
- the probability measure $P \in \mathcal{M}^1_+(\mathcal{D})$
- is said to be a $\mathscr{B}\text{-Markov}$ probability measure on $\mathscr{D},$
- if and only if all sets $B \in \mathscr{B}$ are Markov substitute sets of P.
- The notation $\mathfrak{M}(\mathcal{D}, \mathscr{B})$ will stand for the set of \mathscr{B} -Markov probability measures on the domain \mathscr{D} .

A training sample

[O He is a clever guy . [O He is doing some shopping . [O He is laughing . [O He is not interested in sports . [O He is walking . [O He likes to walk in the streets . [0 I am driving a car . [O I am riding a horse too . [0 I am running . [O Paul is crossing the street . [O Paul is driving a car . [O Paul is riding a horse . [O Paul is walking . [O Peter is walking . [O While I was walking , I saw Paul crossing the street . Syntax rules, inferred from the training sample

[O He likes to walk]6]3 streets . [0]1]8 clever guy . [0]1 doing some shopping . [0]1 laughing . [0]1 not interested]6 sports . [0]1 riding]8 horse . [0]1 riding]8 horse]2 . [0]1 running. [0]7 am]5. [0 Paul is]5 . [O He is]5 . [0]1 crossing]3 street . [0]1 driving]8 car . [0]4 is]5. [0]1 walking . [O Peter is]5. [0 While]7 was]5 .]7 saw]4]5 . [1 He is [1 Peter is

Syntax rules, inferred from the training sample

```
[1 While ]7 was ]5 , ]7 saw ]4
[1]7 am
[1 Paul is
[2 too
[3 the
[4 Paul
[4 Peter
[5 crossing ]3 street
[5 driving ]8 car
[5 riding ]8 horse
[5 walking
[5 ]5 too
[5]8 clever guy
[5 doing some shopping
[5 laughing
[5 not interested ]6 sports
[5 running
[6 in
[7 I
[8 a
```

[O Paul is driving a car too . [O Paul is doing some shopping . [O Paul is laughing . [O Paul is riding a horse too . [O Paul is running too . [O Paul is running . [O Paul is not interested in sports too . [O Paul is not interested in sports . [O Paul is a clever guy too . [O Paul is a clever guy . [O Paul is walking too . [O Peter is driving a car too . [O Peter is driving a car . [O Peter is doing some shopping . [O Peter is laughing . [O Peter is riding a horse too . [O Peter is riding a horse . [O Peter is running too . [O Peter is running . [O Peter is not interested in sports .

[O Peter is a clever guy . [O Peter is crossing the street . [O He is driving a car too . [O He is driving a car . [O He is riding a horse too . [O He is riding a horse . [O He is running too . [O He is running . [O He is not interested in sports too . [O He is crossing the street too . [O He is crossing the street . [O He is walking too . [O I am driving a car too . [O I am doing some shopping . [0 I am laughing too . [O I am laughing . [O I am riding a horse . [O I am not interested in sports . [O I am a clever guy . [O I am crossing the street too . [O I am crossing the street . [0 I am walking too . [0 I am walking .

[O While I was driving a car , I saw Paul doing some shopping too . [O While I was driving a car , I saw Paul doing some shopping . [O While I was driving a car , I saw Paul riding a horse . [O While I was driving a car , I saw Paul crossing the street . [O While I was driving a car , I saw Paul walking . [O While I was driving a car, I saw Peter riding a horse. [O While I was doing some shopping , I saw Paul riding a horse . [O While I was doing some shopping , I saw Paul walking . [O While I was laughing too , I saw Peter crossing the street . [O While I was laughing , I saw Peter riding a horse . [O While I was riding a horse , I saw Paul driving a car too . [O While I was riding a horse , I saw Paul driving a car . [O While I was riding a horse , I saw Paul laughing . [O While I was riding a horse , I saw Paul running . [O While I was riding a horse , I saw Paul walking . [O While I was riding a horse , I saw Peter not interested in sports . [O While I was running , I saw Paul laughing .

[O While I was running , I saw Paul not interested in sports . [O While I was running , I saw Paul a clever guy . [O While I was running , I saw Paul walking . [O While I was not interested in sports , I saw Paul driving a car . [O While I was not interested in sports , I saw Paul riding a horse . [O While I was a clever guy , I saw Paul running . [O While I was a clever guy , I saw Paul crossing the street . [O While I was a clever guy , I saw Paul walking . [O While I was crossing the street , I saw Paul riding a horse . [O While I was crossing the street , I saw Paul running . [O While I was crossing the street , I saw Paul crossing the street . [O While I was crossing the street , I saw Paul walking . [O While I was crossing the street , I saw Peter walking . [O While I was walking , I saw Paul driving a car . [O While I was walking , I saw Paul laughing . [O While I was walking , I saw Paul riding a horse . [O While I was walking , I saw Paul running . [O While I was walking , I saw Paul not interested in sports . [O While I was walking , I saw Paul crossing the street too . [O While I was walking , I saw Paul walking . [O While I was walking , I saw Peter not interested in sports . [O While I was walking , I saw Peter walking .

also known as Gibbs measures

The substitute graph on ${\mathscr D}$

$$\begin{aligned} \mathscr{G}(\mathscr{D},\mathscr{B}) &= \left\{ \left(\gamma(x,y,z), \gamma(x,y',z) \right), \\ (x,z) \in \left(D^*\right)^2, (y,y') \in B^2, B \in \mathscr{B} \right\} \cap \left(\mathscr{D} \times \mathscr{D}\right) \end{aligned}$$

defines an equivalence relation $\sim_{\mathscr{B}}$ on the domain \mathscr{D} .

- The components $\mathscr{D}/\!\!\sim_{\mathscr{B}}$ are the connected components of the graph.
- The support of any P ∈ 𝔅(𝔅,𝔅) is necessarily a union of components: for some 𝔅_P ⊂ 𝔅/∼_𝔅

$$\operatorname{supp}(P) = \bigcup_{C \in \mathscr{C}_P} C$$

$\mathcal B\text{-}\mathrm{Markov}$ models form exponential families

also known as Gibbs measures

${\mathscr B}\operatorname{\!-Markov}$ models with a given support

Conversely, for any $\mathscr{C} \subset \mathscr{D}/\sim_{\mathscr{B}}$, the set $\mathfrak{M}_{\mathscr{C}}(\mathscr{D}, \mathscr{B})$ of \mathscr{B} -Markov probability measures with support $\bigcup_{C \in \mathscr{C}} C$ is non-empty.

also known as Gibbs measures

Independent *B*-Markov processes

• Consider $\xi \in \mathscr{M}_+(D)$, such that $r = 1 - \xi(D) > 0$,

• and let
$$\widetilde{P}(w) = \frac{r}{1-r} \prod_{j=1}^{k} \xi(w_j), \quad w \in D^k, k \in \mathbb{N} \setminus \{0\}.$$

• Remark that $\tilde{P} \in \mathfrak{M}(D^+, {\operatorname{supp}}(\xi)^+)).$

For any family ℬ of subsets of D⁺, any domain ℒ ⊂ D⁺, any ℒ ⊂ ℒ/~ℬ, any probability measure μ ∈ ℳ¹₊(ℒ), the probability P defined as
P(s) = ∑_{C∈ℒ} 𝔅(s ∈ C)µ(C)P̃(s)/P̃(C), s ∈ ℒ belongs to
𝔐_ℋ(ℒ,ℬ).

also known as Gibbs measures

Active pairs

- Consider any domain $\mathscr{D} \subset D^+$ and any family $\mathscr{B} \subset 2^{D^+}$
- let \mathscr{P} be a minimal set of pairs such that $\mathfrak{M}(\mathscr{D},\mathscr{B}) = \mathfrak{M}(\mathscr{D},\mathscr{P})$, implying that $\mathscr{D}/\sim_{\mathscr{B}} = \mathscr{D}/\sim_{\mathscr{P}}$.
- Let $\mathscr{C} \subset \mathscr{D}/\sim_{\mathscr{B}}$.
- Define the set of active pairs $\mathscr{A} = \Big\{ \{y, y'\} \in \mathscr{P}, \text{ for some } x, z \in D^*, \ C \in \mathscr{C}, \\ \gamma(x, \{y, y'\}, z) \subset C \Big\}.$

also known as Gibbs measures

Free pairs and Gibbs measures

- $\bullet\,$ There is a nonempty subset $\mathscr{F}\subset\mathscr{A}$ of free pairs,
- and energy functions $U_i : \bigcup_{C \in \mathscr{C}} C \to \mathbb{R}$, where $i \in \mathscr{I} \stackrel{\text{def}}{=} \mathscr{F} \cup \mathscr{C}$, such that,

• defining
$$Z_{\beta} = \sum_{C \in \mathscr{C}} \sum_{s \in C} \exp\left(-\sum_{i \in \mathscr{I}} \beta_i U_i(s)\right).$$

• and $P_{\beta}(s) = Z_{\beta}^{-1} \exp\left(-\sum_{i \in \mathscr{I}} \beta_i U_i(s)\right), \quad s \in \bigcup_{C \in \mathscr{C}}$

- $\mathfrak{M}_{\mathscr{C}}(\mathscr{D},\mathscr{B}) = \Big\{ P_{\beta} : \beta \in \mathbb{R}^{\mathscr{I}}, Z_{\beta} < \infty \Big\},\$
- and such that moreover

$$\left(P_{\beta}=P_{\beta'} \text{ and } Z_{\beta}=Z_{\beta'}\right) \iff \beta=\beta'.$$

also known as Gibbs measures

Substitute exponents from temperature parameters

- For any $i = \{y, y'\} \in \mathscr{F}$, where $y < y', \beta(y, y') = \beta_i$,
- and for any $j = \{z, z'\} \in \mathscr{A} \setminus \mathscr{F}$, where z < z',

$$\beta(z, z') = \sum_{i \in \mathscr{F}} \beta_i e_{i,j},$$

- for some matrix $(e_{i,j}, i \in \mathscr{F}, j \in \mathscr{A} \setminus \mathscr{F}),$
- while the substitute exponents for non active pairs in $\mathscr{P} \setminus \mathscr{A}$ can be set arbitrarily.

Some ideas from the proof: the loop constraint

- For any path (x_0, \ldots, x_k) in the substitute graph $\mathscr{G}(\mathscr{D}, \mathscr{A})$, there are pairs $\{y_j, y'_j\} \in \mathscr{A}$ such that one goes from x_{j-1} to x_j by changing y_j into y'_j .
- Therefore, if $P \in \mathfrak{M}_{\mathscr{C}}(\mathscr{D}, \mathscr{B})$, $P(x_k) = P(x_1) \exp\left(\sum_{j=1}^k \beta(y_j, y'_j)\right)$ $= P(x_1) \exp\left(\sum_{p \in \mathscr{A}} -\beta(p) V_p(x_0, \dots, x_k)\right)$,

where

$$V_p(x_1,...,x_k) = \sum_{j=1}^k \Big[\mathbb{1} (y_j > y'_j) - \mathbb{1} (y_j < y'_j) \Big] \mathbb{1} \Big(p = \{y_j, y'_j\} \Big).$$

• We have to meet the constraint $\sum_{p \in \mathscr{A}} \beta(p) V_p(\ell) = 0$ for all

 $\ell \in \mathfrak{L}(\mathscr{C})$ the set of loops of \mathscr{G} included in the support of P.

The free pairs

- Let {V_p, p ∈ 𝔄 \𝔅} be a vector basis of span{V_p ∈ ℝ^{𝔅(𝔅)}, p ∈ 𝔅}.
 For any p ∈ 𝔅, V_p = - ∑_{q∈𝔅\𝔅} e_{p,q} V_q, for some matrix e_{p,q}, p ∈ 𝔅, q ∈ 𝔄 \𝔅.
 The constraint writes as ∑_{q∈𝔅\𝔅} (β_q - ∑_{p∈𝔅} β_p e_{p,q}) V_q = 0
- and is equivalent to $\beta_q = \sum_{p \in \mathscr{F}} \beta_p e_{p,q}, \ q \in \mathscr{A} \setminus \mathscr{F}.$
- For any path $\pi_{x_C,x} \in \mathscr{G}(\mathscr{D},\mathscr{A})$, joining $x_C \in C \in \mathscr{C}$ to x (so that $x \in C$), the energy function

$$U_p(\pi_{x_C,x}) = V_p(\pi_{x_C,x}) + \sum_{q \in \mathscr{A} \setminus \mathscr{F}} e_{p,q} V_q(\pi_{x_C,x}) = U_p(x)$$

depends only on x, because $U_p(\ell) = 0$ on loops $\ell \in \mathfrak{L}(\mathscr{C})$.

The Gibbs measure

• Therefore
$$P(x) = P(x_C) \exp\left(-\sum_{p \in \mathscr{F}} \beta_p U_p(x)\right)$$

$$= \exp\left(-\sum_{C \in \mathscr{C}} \underbrace{\mathbb{1}(x \in C)}_{=U_C(x)} \underbrace{\log(1/P(x_C))}_{=\beta_C} - \sum_{p \in \mathscr{F}} \beta_p U_p(x)\right)$$
$$= \exp\left(-\sum_{i \in \mathscr{C} \cup \mathscr{F}} \beta_i U_i(x)\right).$$

- In this construction we get $Z_{\beta} = 1$.
- One can check that the converse is true:

if
$$P(x) = Z_{\beta}^{-1} \exp\left(-\sum_{i \in \mathscr{C} \cup \mathscr{F}} \beta_i U_i(x)\right)$$
, where $Z_{\beta} < \infty$,

• then $P \in \mathfrak{M}_{\mathscr{C}}(\mathscr{D}, \mathscr{B})$.

Recursive structures are possible

• Let
$$D = \{a, b, c\}, \mathcal{D} = D^+,$$

• and
$$\mathscr{B} = \{\{a, ab\}, \{c, bc\}\}.$$

• Consider
$$C_1 = \{ab^n c, n \in \mathbb{N}\},\$$

 $C_2 = \{b^m cab^n, (m, n) \in \mathbb{N}^2\},\$
 $C_3 = \{b^k cab^m cab^n, (k, m, n) \in \mathbb{N}^3\}.$

• Remark that $C_j \in D^+ / \sim_{\mathscr{B}}, 1 \leq j \leq 3$.

The support may change the number of free pairs

- In C_1 , the loop $ac \xrightarrow{(a,ab)} abc \xrightarrow{(bc,c)} ac$ is the only constraint, $\mathfrak{M}_{\{C_1\}}(D^+, \mathscr{B}) = \Big\{ P_r \in \mathscr{M}^1_+(C_1) :$ $P_r(ab^n c) = r(1-r)^n, \quad n \in \mathbb{N}, r \in]0,1[\Big\}.$
- In C_2 , there is no loop constraint, so that $\mathfrak{M}_{\{C_2\}}(D^+, \mathscr{B}) = \Big\{ P_{r,t} \in \mathscr{M}^1_+(C_2) :$ $P_{r,t}(b^m cab^n) = rt(1-r)^m(1-t)^n,$ $(m,n) \in \mathbb{N}^2, (r,t) \in]0, 1[^2 \Big\}.$
- In C_3 , the loop constraint is the same as in C_1 , so that $\mathfrak{M}_{\{C_3\}}(D^+, \mathscr{B}) = \Big\{ P_r \in \mathscr{M}^1_+(C_3) :$ $P_r(b^k cab^m cab^n) = r(1-r)^{k+m+n}$ $(k, m, n) \in \mathbb{N}^3, r \in]0, 1[\Big\}.$

The support may change the number of minimal pairs

- In $\mathfrak{M}_{\{C_3\}}(D^+, \mathscr{B})$, the set of substitute pairs \mathscr{B} is minimal,
- whereas it is not in $\mathfrak{M}_{\{C_1\}}(D^+, \mathscr{B})$, indeed

$$\mathfrak{M}_{\{C_1\}}(D^+, \mathscr{B}) = \mathfrak{M}_{\{C_1\}} \Big(D^+, \{\{a, ab\}\} \Big) = \mathfrak{M}_{\{C_1\}} \Big(D^+, \{\{c, bc\}\} \Big).$$

or more accurately with Markov random fields

Markov chains are \mathscr{B} -Markov processes

- Consider a finite dictionary D, the domain $\mathcal{D} = D^L$
- and the substitute sets $\mathscr{B} = \left\{ \gamma(a, D, b), (a, b) \in D^2 \right\}.$
- The components of the state space are $D^L / \sim_{\mathscr{B}} = \{ \gamma(a, D^{L-2}, b) : (a, b) \in D^2 \}.$
- The model $\mathfrak{M}(D^L, \mathscr{B})$ contains the law of all time homogeneous Markov chains (S_1, \ldots, S_L) with positive transition matrix M.

or more accurately with Markov random fields

Some *B*-Markov models are Markov random fields

- Conversely for any process $S \sim P \in \mathfrak{M}(D^L, \mathscr{B})$,
- there is a time-homogeneous Markov chain (X_1, \ldots, X_L) such that
- for any boundary conditions $(a, b)^2 \in D^2$ such that $\mathbb{P}(S_1 = a, S_L = b) > 0,$
- $\mathbb{P}_{S_2,\ldots,S_{L-1}|S_1=a,S_L=b} = \mathbb{P}_{X_2,\ldots,X_{L-1}|X_1=a,X_L=b}$.
- Moreover, the marginal distribution of the pair (S_1, S_L) can be arbitrary, while this is not the case for the distribution of (X_1, X_L) .
- $\bullet\,$ In other words, S is a one-dimensional Markov random field.

Simulating a *B*-Markov process

Some Metropolis algorithm

- To simulate $P \in \mathfrak{M}_{\mathscr{C}}(\mathscr{D}, \mathscr{B})$, we need to know $P(C), C \in \mathscr{C}$
- and the substitute exponents, or equivalently P(y)/P(x) for each $(x, y) \in \mathscr{G}(\mathscr{D}, \mathscr{B})$.
- Let q(x, y) be a Markov kernel on $\mathscr{D} \times \mathscr{D}$ such that $\Big\{(x, y) \in \mathscr{D}^2 : q(x, y) > 0\Big\} = \mathscr{G}(\mathscr{D}, \mathscr{B}) \cup \Big\{(x, x) : x \in \mathscr{D}\Big\}.$
- Choose $x_C \in C$, $C \in \mathscr{C}$, and define the Markov kernel

$$\begin{cases} M(x,y) = q(x,y) \underbrace{\left(1 \wedge \frac{P(y)q(y,x)}{P(x)q(x,y)}\right)}_{\text{acceptance probability}}, & x \neq y \in \mathscr{D}, \\ M(x,x) = 1 - \sum_{y,y \neq x} M(x,y). \end{cases}$$

• For any y in \mathscr{D} , $P(y) = \lim_{n \to \infty} \sum_{C \in \mathscr{C}} P(C) M^n(x_C, y)$

Replicated sample

- Consider some (deterministic) sample $(x_1, \ldots, x_n) \in (D^+)^n$.
- Take *m* copies x_1, \ldots, x_N , where N = nm.
- Let $\mu_N = \frac{1}{|\mathfrak{S}_N|} \sum_{\sigma \in \mathfrak{S}_N} \delta_{x \circ \sigma} \in \mathscr{M}^1_+((D^+)^N)$ be the uniform

measure on the permutations of the replicated sample.

- Let $p = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \in \mathscr{M}^1_+(D^+)$ be the empirical measure of the original sample.
- Remark that μ_N is symmetric and consequently *p*-chaotic: $\lim_{N \to \infty} \int \varphi_1(x_1) \varphi_2(x_2) d\mu_N(x_1, \dots x_N) = \int \varphi_1(x_1) dp(x_1) \int \varphi_2(x_2) dp(x_2).$

Conditions on the model

- \bullet Consider a substitute model $\mathfrak{M}_{\mathscr{C}}(\mathscr{D},\mathscr{B})$ such that
- the domain contains the sample: $\{x_i, 1 \leq i \leq n\} \subset \mathscr{D}$,
- all members of substitute sets are present in the sample: $\sum_{i=1}^{n} \mathbb{1}(y \prec x_i) > 0, \text{ for any } y \in B \in \mathscr{B}, \text{ where } y \prec x \text{ means }$ that y is a subsequence of x, or in other words that for some $(a, b) \in (D^*)^2, x = \gamma(a, y, b),$
- all components of the support are present in the sample: $\mathscr{C} = \Big\{ C \in \mathscr{D} / \sim_{\mathscr{B}} : C \cap \{x_1, \dots, x_n\} \neq \varnothing \Big\}.$

Conditions on crossing-over dynamics

- Consider a Markov transition kernel $Q_N(x, y), x, y \in \mathscr{D}^N$, such that
- $Q_N\Big[(\gamma(a,b,c),\gamma(a',b',c'),x_3,\ldots,x_N);$ $(\gamma(a,b',c),\gamma(a',b,c'),x_3,\ldots,x_N)\Big] > 0$ for any $(a,c) \in (D^*)^2$, $\{b,b'\} \subset B \in \mathscr{B}$ and $(x_3,\ldots,x_N) \in \mathscr{D}$,
- Q_N is permutation invariant and symmetric: $Q_N(x \circ \sigma, y \circ \sigma') = Q_N(x, y) = Q_N(y, x)$, for any $x, y \in (D^+)^N$, and any $\sigma, \sigma' \in \mathfrak{S}_N$,
- Q_N is aperiodic, that will be the case for instance if $Q_N(x,x) > 0$, for any $x \in \mathscr{D}$.

•
$$Q_N(x,y) > 0 \implies \sum_{j=1}^N U_i(x_j) = \sum_{j=1}^N U_i(y_j), \ i \in \mathscr{I}.$$

Crossing-over dynamics and the maximum likehood estimator

Propagation of chaos

• Consider the empirical measure

$$M_N: x \in \mathscr{D}^N \mapsto M_N(x) = \frac{1}{N} \sum_{i=1}^N \delta_{x_i} \in \mathscr{M}^1_+(\mathscr{D}).$$

- Let $\nu_{N,k} = \mu_N Q_N^k$ be the marginal of the crossing-over dynamics after k iterations,
- Let $\nu_N = \lim_{k \to \infty} \nu_{N,k}$. As Q_N is symmetric, ν_N is the uniform measure on its support.
- The law of the empirical measure $m_N = \nu_N \circ M_N^{-1}$ converges towards the likelihood estimator: $\lim_{N \to \infty} m_N = \delta_m$,

where
$$m = \arg \max_{P \in \mathfrak{M}_{\mathscr{C}}(\mathscr{D},\mathscr{B})} \prod_{i=1}^{n} P(x_i).$$

• Moreover ν_N is *m*-chaotic.

Some combinatorics

- Since ν_N is uniform on its support and $m_N = \nu_N \circ M_N^{-1}$, $m_N(\rho) = Z_N^{-1} \frac{N!}{\prod (N\rho(x))!}$ $\approx \exp\left\{N\left[H(\rho) - \sup_{\rho' \in \operatorname{supp}(m_N)} H(\rho')\right] \pm c \log(N)\right\},$ from Stirling's formula, where $H(\rho) = -\sum_{x \in \mathscr{D}} \rho(x) \log(\rho(x))$ is Shannon's entropy.
- Moreover $|\operatorname{supp}(m_N)| \leq N^{|\mathscr{D}|}$,
- implying that $\lim_{N\to\infty} m_N \left(\arg \max_{\rho \in \operatorname{supp}(m_N)} H(\rho) \right) = 1.$

The limit support

• Consider

$$\begin{aligned} \mathscr{Q} &= \Big\{ \delta_{\gamma(a,b',c)} + \delta_{\gamma(a',b,c')} - \delta_{\gamma(a,b,c)} - \delta_{\gamma(a',b',c')}, \\ & a, c, a', c' \in D^*, \{b,b'\} \subset B \in \mathscr{B}, \\ & \gamma(a,b,c), \gamma(a,b',c), \gamma(a',b,c'), \gamma(a',b',c') \in \bigcup \mathscr{C} \Big\}. \end{aligned}$$

• Remark that $\lim_{N \to \infty} \operatorname{supp}(m_N) = A = \left\{ p + \sum_{\xi \in \mathscr{Q}} \alpha(\xi) \xi, \alpha \in \mathbb{R}^{\mathscr{Q}} \right\} \cap \mathscr{M}^1_+(\mathscr{D}) \text{ is }$

a convex set.

• Let $m = \operatorname*{arg\,max}_{\rho \in A} H(\rho)$. One can prove that $\operatorname{supp}(m) = \bigcup \mathscr{C}$, and that $\frac{m(\gamma(a,b',c))}{m(\gamma(a,b,c))} = \frac{m(\gamma(a',b',c'))}{m(\gamma(a',b,c'))}$, under the same conditions as in the definition of \mathscr{Q} . This is a consequence of $\frac{\partial}{\partial \alpha}|_{\alpha=0} H(m+\alpha\xi) = 0$, and implies that $m \in \mathfrak{M}_{\mathscr{C}}(\mathscr{D},\mathscr{B})$.

The maximum likelihood estimator

- Remark that $\int U_i(x) dm(x) = \frac{1}{n} \sum_{j=1}^n U_i(x_j), i \in \mathscr{I}$, since for any $\xi \in \mathscr{Q}$ and any $i \in \mathscr{I}$, $\int U_i(x) d\xi(x) = 0$.
- As we have seen that $m \in \mathfrak{M}_{\mathscr{C}}(\mathscr{D}, \mathscr{B})$
- we decuce that m is the maximum likelihood estimator of the original sample (x_1, \ldots, x_n) ,

$$m = \arg \max_{P \in \mathfrak{M}_{\mathscr{C}}(\mathscr{D},\mathscr{B})} \prod_{i=1}^{n} P(x_i).$$

Convergence of the empirical measure

$$\int \varphi_1(x_1) \mathrm{d}m(x_1) \int \varphi_2(x_2) \mathrm{d}m(x_2).$$

Summary

- We have a parametric model for some probability ratios $\frac{P(\gamma(x, y, z))}{P(\gamma(x, y', z))} = \exp(\beta(y, y'))$
- We get exponential families for any given support.
- The number of parameters is related to linear loop constraints.
- Crossing-over dynamics compute the maximum likelihood estimator "automatically", without requiring any explicit estimate of the substitute exponents.

Further questions

- We can use Context Free Grammars to describe substitute sets more efficiently.
- How can we compute an estimate of P(x) ?
- How to select the model, that is how to choose the family \mathscr{B} of substitute sets ?