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A model for random finite sequences

Finite sequences of words

Let D be a finite dictionary,

and D+ =
⋃∞

j=1D
j the set of all finite sequences of words of

positive length.

Let ε be the empty sequence (of length zero),

and D∗ = D+∪{ε} the set of finite sequences, including the
empty one.

A random sentence

We will present a model

for random finite sequences,

that is a family of probability measures included in
M 1

+(D+), the set of probability measures on D+.



Markov substitute sets

A string distribution

Let D ⊂D+ be a domain,

and P ∈M 1
+(D) a probability distribution on D .

Let γ be the concatenation operator.

Definition (Markov substitute sets)

A set B ⊂D+ is a Markov substitute set of P if and only if

there exists a function β : B ×B →R, that we will call the
substitute exponent, such that

for any context (x ,z ) ∈
(
D∗
)2

,

for any couple of expressions (y ,y ′) ∈ B2,

such that
(
γ(x ,y ,z ),γ(x ,y ′,z )

)
∈D2,

P
(
γ(x ,y ′,z )

)
= P

(
γ(x ,y ,z )

)
exp

(
β(y ,y ′)

)
.



Properties of the substitute exponent

Symmetry and independence from B

Since P
(
γ(x ,y ′,z )

)
= P

(
γ(x ,y ,z )

)
exp

(
β(y ,y ′)

)
, the

substitute exponent is skew-symmetric:

β(y ′,y) =−β(y ,y ′).

The substitute exponent does not depend on B : if
{y ,y ′} ⊂ B ∩B ′, two Markov substitute sets, then we can
take the same value of β(y ,y ′) to describe the substitute
property in B and in B ′.



First properties

Proposition (Crossing-over does not change the likelihood)

For any Markov substitute set B of P ∈M 1
+
(
D
)
,

for any two contexts (x1,z1),(x2,z2) ∈
(
D∗
)2
,

and any pair y1,y2 ∈ B,

such that γ(xi ,yj ,zi) ∈D , 1≤ i ≤ 2,1≤ j ≤ 2,

P
(
γ(x1,y1,z1)

)
P
(
γ(x2,y2,z2)

)
= P

(
γ(x1,y2,z1)

)
P
(
γ(x2,y1,z2)

)



Elementary properties of substitute sets

Pairs are sufficient

A subset of a Markov substitute set is itself a Markov
substitute set,

The set B ⊂D+ is a Markov substitute set if and only if
any pair {y ,y ′} ⊂ B is a Markov substitute set,

If B is a Markov subsitute set and (x ,z ) ∈
(
D∗
)2

is a
context, then

γ(x ,B ,z ) def=
{
γ(x ,y ,z ) : y ∈ B

}
is also a Markov substitute set.



Substitute sets as syntax labels

Decomposition of a sentence likelihood

When B is a Markov substitute set

and the context (x ,z ) ∈
(
D∗
)2

is such that γ(x ,B ,z )⊂D ,

the likelihood of a sequence γ(x ,y ,z ) decomposes into

P
(
γ(x ,y ,z )

)
= P

(
γ(x ,B ,z )

)
qB (y), y ∈ B ,

where qB , the substitute measure of B is defined as

qB (y) =
exp

(
β(y ′,y)

)∑
y ′′∈B

exp
(
β(y ′,y ′′)

) ,
this definition being independent of the choice of y ′ ∈ B .



Substitute sets as syntax labels

Syntax labels

Due to the decomposition

P
(
γ(x ,y ,z )

)
= P

(
γ(x ,B ,z )

)
qB (y), y ∈ B ,

the substitute set B behaves as a syntax label `B ,

the likelihood of γ(x ,y ,z ) being deduced from

the likelihood of the syntactic construction γ(x , `B ,z )
and the likelihood qB (y)
of the rewriting rule `B → y ,

Multiple parsings

but the parsing of γ(x ,y ,x ′) into γ(x , `B ,x ′) may not be
unique.



The set of B-Markov probability measures

Model definition

For any given finite family B of finite subsets of D+,

for any domain D ⊂D+,

the probability measure P ∈M 1
+
(
D
)

is said to be a B-Markov probability measure on D ,

if and only if all sets B ∈B are Markov substitute sets of
P .

The notation M
(
D ,B

)
will stand for the set of B-Markov

probability measures on the domain D .



Substitute Markov models in action

A training sample

[0 He is a clever guy .

[0 He is doing some shopping .

[0 He is laughing .

[0 He is not interested in sports .

[0 He is walking .

[0 He likes to walk in the streets .

[0 I am driving a car .

[0 I am riding a horse too .

[0 I am running .

[0 Paul is crossing the street .

[0 Paul is driving a car .

[0 Paul is riding a horse .

[0 Paul is walking .

[0 Peter is walking .

[0 While I was walking , I saw Paul crossing the street .



Syntax rules, inferred from the training sample

[0 He likes to walk ]6 ]3 streets .

[0 ]1 ]8 clever guy .

[0 ]1 doing some shopping .

[0 ]1 laughing .

[0 ]1 not interested ]6 sports .

[0 ]1 riding ]8 horse .

[0 ]1 riding ]8 horse ]2 .

[0 ]1 running .

[0 ]7 am ]5 .

[0 Paul is ]5 .

[0 He is ]5 .

[0 ]1 crossing ]3 street .

[0 ]1 driving ]8 car .

[0 ]4 is ]5 .

[0 ]1 walking .

[0 Peter is ]5 .

[0 While ]7 was ]5 , ]7 saw ]4 ]5 .

[1 He is

[1 Peter is



Syntax rules, inferred from the training sample

[1 While ]7 was ]5 , ]7 saw ]4

[1 ]7 am

[1 Paul is

[2 too

[3 the

[4 Paul

[4 Peter

[5 crossing ]3 street

[5 driving ]8 car

[5 riding ]8 horse

[5 walking

[5 ]5 too

[5 ]8 clever guy

[5 doing some shopping

[5 laughing

[5 not interested ]6 sports

[5 running

[6 in

[7 I

[8 a



New sentences discovered
[0 Paul is driving a car too .

[0 Paul is doing some shopping .

[0 Paul is laughing .

[0 Paul is riding a horse too .

[0 Paul is running too .

[0 Paul is running .

[0 Paul is not interested in sports too .

[0 Paul is not interested in sports .

[0 Paul is a clever guy too .

[0 Paul is a clever guy .

[0 Paul is walking too .

[0 Peter is driving a car too .

[0 Peter is driving a car .

[0 Peter is doing some shopping .

[0 Peter is laughing .

[0 Peter is riding a horse too .

[0 Peter is riding a horse .

[0 Peter is running too .

[0 Peter is running .

[0 Peter is not interested in sports .



New sentences discovered
[0 Peter is a clever guy .

[0 Peter is crossing the street .

[0 He is driving a car too .

[0 He is driving a car .

[0 He is riding a horse too .

[0 He is riding a horse .

[0 He is running too .

[0 He is running .

[0 He is not interested in sports too .

[0 He is crossing the street too .

[0 He is crossing the street .

[0 He is walking too .

[0 I am driving a car too .

[0 I am doing some shopping .

[0 I am laughing too .

[0 I am laughing .

[0 I am riding a horse .

[0 I am not interested in sports .

[0 I am a clever guy .

[0 I am crossing the street too .

[0 I am crossing the street .

[0 I am walking too .

[0 I am walking .



New sentences discovered
[0 While I was driving a car , I saw Paul doing some shopping too .

[0 While I was driving a car , I saw Paul doing some shopping .

[0 While I was driving a car , I saw Paul riding a horse .

[0 While I was driving a car , I saw Paul crossing the street .

[0 While I was driving a car , I saw Paul walking .

[0 While I was driving a car , I saw Peter riding a horse .

[0 While I was doing some shopping , I saw Paul riding a horse .

[0 While I was doing some shopping , I saw Paul walking .

[0 While I was laughing too , I saw Peter crossing the street .

[0 While I was laughing , I saw Peter riding a horse .

[0 While I was riding a horse , I saw Paul driving a car too .

[0 While I was riding a horse , I saw Paul driving a car .

[0 While I was riding a horse , I saw Paul laughing .

[0 While I was riding a horse , I saw Paul running .

[0 While I was riding a horse , I saw Paul walking .

[0 While I was riding a horse , I saw Peter not interested in sports .

[0 While I was running , I saw Paul laughing .



New sentences discovered
[0 While I was running , I saw Paul not interested in sports .

[0 While I was running , I saw Paul a clever guy .

[0 While I was running , I saw Paul walking .

[0 While I was not interested in sports , I saw Paul driving a car .

[0 While I was not interested in sports , I saw Paul riding a horse .

[0 While I was a clever guy , I saw Paul running .

[0 While I was a clever guy , I saw Paul crossing the street .

[0 While I was a clever guy , I saw Paul walking .

[0 While I was crossing the street , I saw Paul riding a horse .

[0 While I was crossing the street , I saw Paul running .

[0 While I was crossing the street , I saw Paul crossing the street .

[0 While I was crossing the street , I saw Paul walking .

[0 While I was crossing the street , I saw Peter walking .

[0 While I was walking , I saw Paul driving a car .

[0 While I was walking , I saw Paul laughing .

[0 While I was walking , I saw Paul riding a horse .

[0 While I was walking , I saw Paul running .

[0 While I was walking , I saw Paul not interested in sports .

[0 While I was walking , I saw Paul crossing the street too .

[0 While I was walking , I saw Paul walking .

[0 While I was walking , I saw Peter not interested in sports .

[0 While I was walking , I saw Peter walking .



B-Markov models form exponential families
also known as Gibbs measures

The substitute graph on D

G (D ,B) =
{(
γ(x ,y ,z ),γ(x ,y ′,z )

)
,

(x ,z ) ∈
(
D∗
)2
,(y ,y ′) ∈ B2,B ∈B

}
∩
(
D×D

)
defines an equivalence relation ∼B on the domain D .

The components D/∼B are the connected components of
the graph.

The support of any P ∈M(D ,B) is necessarily a union of
components: for some CP ⊂D/∼B

supp(P) =
⋃

C∈CP

C



B-Markov models form exponential families
also known as Gibbs measures

B-Markov models with a given support

Conversely, for any C ⊂D/∼B, the set MC (D ,B) of B-Markov
probability measures with support

⋃
C∈C C is non-empty.



B-Markov models form exponential families
also known as Gibbs measures

Independent B-Markov processes

Consider ξ ∈M+(D), such that r = 1− ξ(D)> 0,

and let P̃(w) = r

1− r

k∏
j=1

ξ(wj ), w ∈Dk ,k ∈N\{0}.

Remark that P̃ ∈M
(
D+,{supp(ξ)+}

)
.

For any family B of subsets of D+, any domain D ⊂D+,
any C ⊂D/∼B, any probability measure µ ∈M 1

+(C ), the
probability P defined as
P(s) =

∑
C∈C

1
(
s ∈ C

)
µ(C )P̃(s)/P̃(C ), s ∈D belongs to

MC (D ,B).



B-Markov models form exponential families
also known as Gibbs measures

Active pairs

Consider any domain D ⊂D+ and any family B ⊂ 2D
+

let P be a minimal set of pairs such that
M(D ,B) = M(D ,P), implying that D/∼B = D/∼P .

Let C ⊂D/∼B.

Define the set of active pairs

A =
{
{y ,y ′} ∈P, for some x ,z ∈D∗, C ∈ C ,

γ(x ,{y ,y ′},z )⊂ C
}

.



B-Markov models form exponential families
also known as Gibbs measures

Free pairs and Gibbs measures

There is a nonempty subset F ⊂A of free pairs,

and energy functions Ui :
⋃

C∈C C →R, where

i ∈I
def= F ∪C , such that,

defining Zβ =
∑
C∈C

∑
s∈C

exp

(
−
∑
i∈I

βiUi(s)
)

.

and Pβ(s) = Z−1β exp

(
−
∑
i∈I

βiUi(s)
)
, s ∈

⋃
C∈C

C

MC
(
D ,B

)
=
{
Pβ : β ∈RI ,Zβ <∞

}
,

and such that moreover(
Pβ = Pβ′ and Zβ = Zβ′

)
⇐⇒ β = β′.



B-Markov models form exponential families
also known as Gibbs measures

Substitute exponents from temperature parameters

For any i = {y ,y ′} ∈F , where y < y ′, β(y ,y ′) = βi ,

and for any j = {z ,z ′} ∈A \F , where z < z ′,

β(z ,z ′) =
∑
i∈F

βiei ,j ,

for some matrix
(
ei ,j , i ∈F , j ∈A \F

)
,

while the substitute exponents for non active pairs in
P \A can be set arbitrarily.



Some ideas from the proof: the loop constraint

For any path (x0, . . . ,xk ) in the substitute graph G (D ,A ),
there are pairs {yj ,y ′j } ∈A such that one goes from xj−1 to
xj by changing yj into y ′j .

Therefore, if P ∈MC (D ,B),

P(xk ) = P(x1)exp

(
k∑

j=1

β(yj ,y ′j )
)

= P(x1)exp

(∑
p∈A

−β(p)Vp(x0, . . . ,xk )
)

,

where

Vp(x1, . . . ,xk ) =
k∑

j=1

[
1
(
yj > y ′j

)
−1

(
yj < y ′j

)]
1
(
p = {yj ,y ′j }

)
.

We have to meet the constraint
∑
p∈A

β(p)Vp(`) = 0 for all

` ∈ L
(
C
)

the set of loops of G included in the support of P .



The free pairs

Let
{
Vp ,p ∈A \F

}
be a vector basis of

span
{
Vp ∈RL(C ),p ∈A

}
.

For any p ∈F , Vp =−
∑

q∈A \F
ep,qVq , for some matrix ep,q ,

p ∈F ,q ∈A \F .

The constraint writes as
∑

q∈A \F

(
βq −

∑
p∈F

βpep,q

)
Vq = 0

and is equivalent to βq =
∑
p∈F

βpep,q , q ∈A \F .

For any path πxC ,x ∈ G (D ,A ), joining xC ∈ C ∈ C to x (so
that x ∈ C ), the energy function

Up(πxC ,x ) = Vp(πxC ,x )+
∑

q∈A \F
ep,qVq(πxC ,x ) = Up(x )

depends only on x , because Up(`) = 0 on loops ` ∈ L(C ).



The Gibbs measure

Therefore P(x ) = P(xC )exp

(
−
∑
p∈F

βpUp(x )
)

= exp

(
−
∑
C∈C

1(x ∈ C )︸ ︷︷ ︸
=UC (x)

log
(
1/P(xC )

)︸ ︷︷ ︸
=βC

−
∑
p∈F

βpUp(x )
)

= exp

(
−

∑
i∈C∪F

βiUi(x )
)

.

In this construction we get Zβ = 1.

One can check that the converse is true:

if P(x ) = Z−1β exp

(
−

∑
i∈C∪F

βiUi(x )
)

, where Zβ <∞,

then P ∈MC (D ,B). �



A toy example

Recursive structures are possible

Let D = {a,b,c}, D = D+,

and B =
{
{a,ab},{c,bc}

}
.

Consider C1 =
{
abnc,n ∈N

}
,

C2 =
{
bmcabn ,(m,n) ∈N2},

C3 =
{
bkcabmcabn ,(k ,m,n) ∈N3}.

Remark that Cj ∈D+/∼B, 1≤ j ≤ 3.



The support may change the number of free pairs

In C1, the loop ac
(a,ab)−→ abc

(bc,c)−→ ac is the only constraint,

M{C1}(D
+,B) =

{
Pr ∈M 1

+(C1) :

Pr (abnc) = r(1− r)n , n ∈N,r ∈]0,1[
}
.

In C2, there is no loop constraint, so that

M{C2}(D
+,B) =

{
Pr ,t ∈M 1

+(C2) :

Pr ,t(bmcabn) = rt(1− r)m(1− t)n ,
(m,n) ∈N2,(r , t) ∈]0,1[2

}
.

In C3, the loop constraint is the same as in C1, so that

M{C3}(D+,B) =
{
Pr ∈M 1

+(C3) :

Pr
(
bkcabmcabn

)
= r(1− r)k+m+n

(k ,m,n) ∈N3,r ∈]0,1[
}
.



The support may change the number of minimal pairs

In M{C3}(D+,B), the set of substitute pairs B is minimal,

whereas it is not in M{C1}(D+,B), indeed

M{C1}(D+,B) = M{C1}
(
D+,

{
{a,ab}

})
= M{C1}

(
D+,

{
{c,bc}

})
.



Relation with Markov chains
or more accurately with Markov random fields

Markov chains are B-Markov processes

Consider a finite dictionary D , the domain D = DL

and the substitute sets B =
{
γ(a,D ,b),(a,b) ∈D2

}
.

The components of the state space are
DL/∼B =

{
γ(a,DL−2,b) : (a,b) ∈D2

}
.

The model M
(
DL,B

)
contains the law of all time

homogeneous Markov chains (S1, . . . ,SL) with positive
transition matrix M .



Relation with Markov chains
or more accurately with Markov random fields

Some B-Markov models are Markov random fields

Conversely for any process S ∼ P ∈M
(
DL,B

)
,

there is a time-homogeneous Markov chain (X1, . . . ,XL)
such that

for any boundary conditions (a,b)2 ∈D2 such that
P
(
S1 = a,SL = b)> 0,

PS2, . . .SL−1 |S1 = a,SL = b =PX2, . . .XL−1 |X1 = a,XL = b .

Moreover, the marginal distribution of the pair (S1,SL) can
be arbitrary, while this is not the case for the distribution
of (X1,XL).
In other words, S is a one-dimensional Markov random
field.



Simulating a B-Markov process

Some Metropolis algorithm

To simulate P ∈MC (D ,B), we need to know P(C ),C ∈ C

and the substitute exponents, or equivalently P(y)/P(x )
for each (x ,y) ∈ G (D ,B).
Let q(x ,y) be a Markov kernel on D×D such that{

(x ,y) ∈D2 : q(x ,y)> 0
}

= G
(
D ,B

)
∪
{

(x ,x ) : x ∈D
}

.

Choose xC ∈ C , C ∈ C , and define the Markov kernel

M (x ,y) = q(x ,y)
(

1∧ P(y)q(y ,x )
P(x )q(x ,y)

)
︸ ︷︷ ︸
acceptance probability

, x 6= y ∈D ,

M (x ,x ) = 1−
∑

y,y 6=x

M (x ,y).

For any y in D , P(y) = lim
n→∞

∑
C∈C

P(C )M n(xC ,y)



Crossing-over dynamics
and the maximum likehood estimator

Replicated sample

Consider some (deterministic) sample (x1, . . . ,xn) ∈
(
D+)n .

Take m copies x1, . . . ,xN , where N = nm.

Let µN = 1

|SN |
∑
σ∈SN

δx◦σ ∈M 1
+
(
(D+)N

)
be the uniform

measure on the permutations of the replicated sample.

Let p = 1

n

n∑
i=1

δxi ∈M 1
+
(
D+) be the empirical measure of

the original sample.

Remark that µN is symmetric and consequently p-chaotic:

lim
N→∞

∫
ϕ1(x1)ϕ2(x2)dµN (x1, . . .xN ) =∫

ϕ1(x1)dp(x1)
∫
ϕ2(x2)dp(x2).



Crossing-over dynamics
and the maximum likehood estimator

Conditions on the model

Consider a substitute model MC (D ,B) such that

the domain contains the sample:
{
xi ,1≤ i ≤ n

}
⊂D ,

all members of substitute sets are present in the sample:
n∑

i=1

1
(
y ≺ xi

)
> 0, for any y ∈ B ∈B, where y ≺ x means

that y is a subsequence of x , or in other words that for
some (a,b) ∈ (D∗)2, x = γ(a,y ,b),
all components of the support are present in the sample:

C =
{
C ∈D/∼B : C ∩

{
x1, . . . ,xn

}
6= ∅

}
.



Crossing-over dynamics
and the maximum likehood estimator

Conditions on crossing-over dynamics

Consider a Markov transition kernel QN (x ,y),x ,y ∈DN ,
such that

QN

[(
γ(a,b,c),γ(a ′,b′,c′),x3, . . . ,xN

)
;(

γ(a,b′,c),γ(a ′,b,c′),x3, . . . ,xN
)]
> 0

for any (a,c) ∈ (D∗)2, {b,b′} ⊂ B ∈B and (x3, . . . ,xN ) ∈D ,

QN is permutation invariant and symmetric:
QN (x ◦σ,y ◦σ′) = QN (x ,y) = QN (y ,x ), for any
x ,y ∈ (D+)N , and any σ,σ′ ∈SN ,

QN is aperiodic, that will be the case for instance if
QN (x ,x )> 0, for any x ∈D .

QN (x ,y)> 0 =⇒
N∑
j=1

Ui(xj ) =
N∑
j=1

Ui(yj ), i ∈I .



Crossing-over dynamics
and the maximum likehood estimator

Propagation of chaos

Consider the empirical measure

MN : x ∈DN 7→MN (x ) = 1

N

N∑
i=1

δxi ∈M 1
+(D).

Let νN ,k = µNQk
N be the marginal of the crossing-over

dynamics after k iterations,

Let νN = lim
k→∞

νN ,k . As QN is symmetric, νN is the uniform

measure on its support.

The law of the empirical measure mN = νN ◦M−1N

converges towards the likelihood estimator: lim
N→∞

mN = δm ,

where m = arg max
P∈MC

(
D ,B

) n∏
i=1

P(xi).

Moreover νN is m-chaotic.



Elements of proof

Some combinatorics

Since νN is uniform on its support and mN = νN ◦M−1N ,

mN (ρ) = Z−1N

N !∏
x∈D

(N ρ(x ))!

� exp
{
N
[
H (ρ)− sup

ρ′∈supp(mN )
H (ρ′)

]
± c log(N )

}
,

from Stirling’s formula, where H (ρ) =−
∑
x∈D

ρ(x ) log
(
ρ(x )

)
is Shannon’s entropy.

Moreover |supp(mN )| ≤N |D |,

implying that lim
N→∞

mN

(
arg max

ρ∈supp(mN )
H (ρ)

)
= 1.



The limit support

Consider
Q =

{
δγ(a,b′,c) + δγ(a′,b,c′)− δγ(a,b,c)− δγ(a′,b′,c′),

a,c,a ′,c′ ∈D∗,{b,b′} ⊂ B ∈B,

γ(a,b,c),γ(a,b′,c),γ(a ′,b,c′),γ(a ′,b′,c′) ∈
⋃

C
}

.

Remark that
lim

N→∞
supp(mN ) = A =

{
p +

∑
ξ∈Q

α(ξ)ξ,α ∈RQ
}
∩M 1

+
(
D
)

is

a convex set.

Let m = argmax
ρ∈A

H (ρ). One can prove that supp(m) =
⋃

C ,

and that
m
(
γ(a,b′,c)

)
m
(
γ(a,b,c)

) =
m
(
γ(a ′,b′,c′)

)
m
(
γ(a ′,b,c′)

) , under the same conditions

as in the definition of Q. This is a consequence of
∂

∂α |α=0
H (m +αξ) = 0, and implies that m ∈MC (D ,B).



The maximum likelihood estimator

Remark that

∫
Ui(x )dm(x ) = 1

n

n∑
j=1

Ui(xj ), i ∈I , since for

any ξ ∈Q and any i ∈I ,

∫
Ui(x )dξ(x ) = 0.

As we have seen that m ∈MC (D ,B)
we decuce that m is the maximum likelihood estimator of
the original sample (x1, . . . ,xn),

m = arg max
P∈MC (D ,B)

n∏
i=1

P(xi).



Convergence of the empirical measure

Since lim
N→∞

mN

(
arg max

ρ∈supp(mN )
H (ρ)

)
= 1,

lim
N→∞

supp(mN ) = A and m = argmax
ρ∈A

H (ρ),

lim
N→∞

∫
1
(
H (ρ)≤H (m)−η

)
dmN (ρ) = 0, and

consequently, H being strictly concave on A, a finite
dimensional convex set,

lim
N→∞

∫
1
(
|ρ−m| ≥ η

)
dmN (ρ) = 0, η > 0, implying that

limN→∞mN = δm and consequently that νN is m-chaotic.

lim
N→∞

∫
ϕ1(x1)ϕ2(x2)dνN (x1, . . .xN ) =∫

ϕ1(x1)dm(x1)
∫
ϕ2(x2)dm(x2).



Conclusion

Summary

We have a parametric model for some probability ratios
P
(
γ(x ,y ,z )

)
P
(
γ(x ,y ′,z )

) = exp
(
β(y ,y ′)

)
We get exponential families for any given support.

The number of parameters is related to linear loop
constraints.

Crossing-over dynamics compute the maximum likelihood
estimator “automatically”, without requiring any explicit
estimate of the substitute exponents.



Conclusion

Further questions

We can use Context Free Grammars to describe substitute
sets more efficiently.

How can we compute an estimate of P(x ) ?

How to select the model, that is how to choose the family
B of substitute sets ?


