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L’inconscient est
structuré comme un
langage.

Jacques Lacan



General motivation

As the human brain translates its perception of the
world into words, we may conjecture that it uses the
same kind of information analysis when dealing with
signals as when dealing with language. We will ex-
plore more specifically the case of visual perception
and propose a mathematical framework for the syntax
analysis of digital images.



The two principles of syntax analysis

Syntax analysis combines two actions:
1 Grouping
2 Context analysis



A statistical framework for syntax analysis of digital images

Input
A training set of digital images of the same size, obtained by extracting
randomly located windows from a data base of larger images. The
training set is a model for data acquired by some sensor (some retina)
looking at the image data base.

Image data base

=⇒

Randomly located
sensor measurements
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A statistical framework for syntax analysis of digital images

Output
A syntax tree for each image of the training set. That is a multiscale
unsupervised pixel classification corresponding to nested pixel
partitions.
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A statistical framework for syntax analysis of digital images

Grouping principle
Cluster together pixels or syntax labels forming a frequent pattern (or
in other words appearing in the same images).
Grouping expresses the fact that I can see a1 and a2 and · · · am

together.

Context analysis principle
Cluster together syntax labels appearing in the same context in
different images.
Context analysis expresses the fact that I can see a1 or a2 or · · · am in
the same contexts.



A statistical framework for syntax analysis of digital images

Syntax trees and logic
Syntax trees express logical formulas of the type∧

i2m−1

· · ·
∧
i3

∨
i2

∧
i1

ai1, ...,i2m−1 .

We can also see the syntax trees as defining sets of rewriting rules.
Thus if we can learn syntax trees, based on some kind of statistical
inference, we can learn some kind of unsupervised logical reasoning
about the training set.



Mathematical model: pixel grouping

Use probability distributions to represent data

Let X ∈ X ⊂ Rd be a random image of size d.
Let the training set be made of n independent copies of X.
Represent the content of image X by the conditional probability
distribution

PS,V | X =
1
d

d∑
s=1

δs ⊗ N
(
Xs,σ

2) ,
where S ∈ ~1,d� and V ∈ R are two additional random variables and
the above defines the joint distribution of the triplet (X,S,V). The
image X is a function of its new representation PS,V | X since

Xs =

∫
v dPV | X, S=s(v).

The variance parameter σ is a free parameter of the new
representation of X.



Mathematical model: pixel grouping

Grouping and conditional independence
We want a pixel classification function ` : X × ~1,d� −→ ~1,k� such
that

PX, S, V | `(X,S) ' PX | `(X, S) ⊗ PS, V | `(X, S) .

When this is true each image is partitioned into pixel patterns:

PS, V | X '

k∑
j=1

P
(
`(X,S) = j | X

)
PS, V | `(X, S) = j︸           ︷︷           ︸
pattern number j

.



Mathematical model: pixel grouping

Using a model and a loss function
Rather than checking the desired property of the previous slide, we
introduce a model and a loss function.

C(`) = inf
Q∈Q`

K
(
QX, S, V ,PX, S, V

)
.

Motivation: according to Sanov’s theorem

− inf
Q∈

◦

Γ

K
(
Q,P) ≤ lim inf

n→∞

1
n

log
[
P⊗n (Pn ∈ Γ

)]

≤ lim sup
n→∞

1
n

log
[
P⊗n (Pn ∈ Γ

)]
≤ − inf

Q∈Γ
K(Q,P),

meaning that K
(
Q,P

)
reflects the log likelihood of observing an

empirical measure close to Q. In other words we want to maximize
the likelihood of the model under the data distribution. In particular
we want Q � P.



Mathematical model: pixel grouping

More motivation
The expression

K(Q,P) =

∫ [
1 −

dQ
dP

+
dQ
dP

log
(

dQ
dP

)]
dP

also shows that the criterion penalizes more the fact that dQ
dP is large

than the fact that it is small: we do not want events that are likely
under the model and unlikely under the data distribution, and to
achieve this, we are ready to accept that some events may be less
likely under the model distribution than under the data distribution.



Mathematical model: pixel grouping

Choose a model that satisfies the conditional independence
assumption
Consider

Q` =
{
Q : QS, V | X,`(X, S) = QS, V | `(X, S)

}
.

Try to compute the loss function
Introduce the random variable W = `(X,S).

C(`) def
= inf

Q∈Q`

K
(
QX, S, V ,PX, S, V

)
= − log

{
sup

QX |W

PW, S

[
exp

(
−K

(
QX |W ,PX |W, S

)
−

1
2σ2 Var

(
QXS |W

))]}



Mathematical model: pixel grouping

Make life simpler by making the model smaller
Considering Aj = supp

(
QX |W=j

)
and Bj = supp

(
QS |W=j

)
, we see that

Aj × Bj = supp
(
QX, S |W=j

)
when Q ∈ Q` and that Q remains in Q` if

we change ` so that `−1(j) = Aj × Bj. We will accordingly assume
without loss of generality that `−1(j) = Aj × Bj for some family Aj × Bj

of disjoint product sets. Since supQX |W
is not easy to compute in the

previous formula, we will also reduce the model to

Q` =
{
Q : QS, V | X, W = QS, V |W and QX |W = PX |W

}
,

where W = `(X,S). With these modifications K
(
QX |W ,PX |W, S

)
= 0.



Mathematical model: pixel grouping

Decomposing the criterion into block weights

We can write C(`) = − log
( k∑

j=1

W(`, j)
)
, where

W(`, j) = P
(
X ∈ Aj

)
P

(
S ∈ Bj

)
PS | S∈Bj

[
exp

(
−

1
2σ2 Var

(
PXS | X∈Aj

))]

= W
(
Aj,Bj).

Thus W(`, j) depends only on Aj, an image subset, and Bj, a pixel
subset, or pixel pattern. So we are led to look for disjoint product sets
Aj × Bj, 1 ≤ j ≤ k, maximizing

k∑
j=1

W(Aj,Bj).

Notice that we arrive at a criterion that reminds of the k-means
criterion.



Mathematical model: pixel grouping

From large and unique towards small and frequent patterns
Assume for simplicity that X = {x1, . . . ,xN } is finite. Instead of
maximizing

∑k
j=1 W

(
Aj,Bj

)
for k fixed we will start from the trivial

solution
k = N, Aj = {xj}, Bj = {1, . . . ,d}

that satisfies
∑k

j=1 W(Aj,Bj) = 1 and create from there by induction a
sequence of solutions Sk =

{
Ak,j,Bk,j : 1 ≤ j ≤ k

}
for

k = N,N + 1,N + 2, . . . , trying at each step to maximize the new
weight W

(
Ak,k,Bk,k

)
while keeping W(Sk) =

∑k
j=1 W(Ak,j,Bk,j) above

a certain level.



Mathematical model: pixel grouping

Induction step: pattern splitting and jigsaw puzzles
Starting from Sk, we choose a pair of indices J ⊂ ~1,k� and define
Sk+1 by

Ak+1,k+1 =
⋃
j∈J

Ak,j,

Bk+1,k+1 =

{
s ∈

⋂
j∈J

Bk,j : Var
(
PXs | X∈Ak+1,k+1

)
≤ a

}
,

Ak+1, j = Ak, j, 1 ≤ j ≤ k

Bk+1, j =



Bk, j \ Bk+1,k+1, j ∈ J,
Bk, j, j ∈ ~1,k� \ J.

Doing so we are sure that

W(Sk) ≥ exp
(
−

a
2σ2

)
.



Mathematical model: pixel grouping

Choice of the pair J
We choose the pair J = {i, j} to make W

(
Ak+1,Bk+1

)
as large as

possible, while keeping the computation cost reasonable. We propose
the following choice

i ∈ arg max
i∈~1, k�

W
(
Ak,i,Bk,i

)
, j ∈ arg max

j∈~1, k�\{i}
W

(
Ak+1,k+1,Bk+1,k+1

)
.



Mathematical model: label grouping

Loss function and model choice
Consider random images X described by label probability measures
PY | X , where Y ∈ Y a finite set of labels (in the building of the syntax
tree, these will be the labels at the previous syntax level). For any
label classification function ` : X × Y→ ~1,k�, consider the loss
function

C(`) = inf
Q∈Q`

K
(
QX,Y ,PX,Y

)
,

where
Q` =

{
Q : QY | X, `(X,Y)=j = QY | `(X, Y) = j︸         ︷︷         ︸

pattern number j

}
.

Putting W = `(X,Y), we can prove that

C(`) = − log sup
QX |W

PY, W
[
exp

(
−K

(
QX |W ,PX | Y, W

))]



Mathematical model: label grouping

From classification functions to product sets
Remarking that, for any Q ∈ Q`,

supp
(
QX, Y |W=j

)
= supp

(
QX |W=j

)︸            ︷︷            ︸
=Aj

× supp
(
QY |W=j

)︸            ︷︷            ︸
=Bj

⊂ `−1(j),

we can introduce

A =
{
(Aj,Bj)k

j=1 : (Ai × Bi) ∩ (Aj × Bj) = ∅, i , j ∈ ~1,k�
}

and see that

inf
`
C(`) = − log sup

(A,B)∈A

k∑
j=1

P
(
(X,Y) ∈ Aj × Bj

)
× sup

QX | X∈Aj

PY | (X, Y)∈ Aj×Bj

[
exp

(
−K

(
QX | X∈Aj ,PX | X∈Aj, Y

))]

= − log sup
(A,B)∈A

k∑
j=1

W(Aj,Bj).



Mathematical model: label grouping

Pattern splitting
Start from the trivial solution

SN =
{
(AN, j,BN, j), 1 ≤ j ≤ N

}
,

where AN, j = {xj} and BN,j = supp
(
PY | X=xj

)
. Based on Sk, compute

Sk+1 in the following way. For some pair J ⊂ ~1,k�, put

Ak+1, k+1 =
⋃
j∈J

Ak, j, Ak+1, j = Ak, j

Bk+1, k+1 =

{
y ∈

⋂
j∈J

Bk, j : K
(
PX | (X, Y)∈Ak+1, k+1×

⋂
j∈J Bk, j ,

PX | X∈Ak+1, k+1, Y=y
)
≤ a

}
,

Bk+1, j =



Bk, j \ Bk+1, k+1, j ∈ J,
Bk, j, j ∈ ~1,k� \ J.



Mathematical model: label grouping

Choice of the pair of patterns
Remark first that whatever the choice of J, C

(
Sk

)
≤ a for all k ≥ N.

We propose to take J = {i, j} where

i ∈ arg max
i∈~1, k�

W
(
Ak, i,Bk i

)
, j ∈ arg max

j∈~1, k�\{i}
W

(
Ak+1, k+1,Bk+1, k+1

)
,

where

W(A,B) = PX, Y
(
A × B

)
PY | (X, Y)∈A×B

[
exp

(
−K

(
PX | (X, Y)∈A×B,PX | X∈A,Y

))]
.



Mathematical model: context analysis

Defining a context function
Starting from a representation PY | X of a random image by a label
distribution, we merge pairs of labels using the classification function
c(X,Y) such that c−1(j) = Aj × Bj, where |Bj | ∈ {1,2}. We require that
PY | X, c(X,Y) ' PY | c(X, Y). For this we use the criterion

C(c) = inf
Q∈Qc

K
(
QX, Y ,PX, Y

)
,

where
Qc =

{
Q : QY | X, c(X,Y) = QY | c(X,Y)

}
.

We use a splitting scheme starting from Bj = {yj} and
Aj = supp

(
PX | Y=yj

)
, where Y =

{
yj, 1 ≤ j ≤ N

}
. We define the

context function as

f (x,y) =



y, when |Bc(x,y) | = 1,
y′ when |Bc(x,y) | = 2 and Bc(x,y) = {y,y′}.



Mathematical model: context analysis

Context analysis
We put T = f (X,Y), to obtain a triplet of random variables (X,Y ,T)
where T is the context of Y in the random image X. We will now
compute a syntax label g(Y ,T), based on the distribution of the pair
(Y ,T). We require that PY, T ' PY | g(Y, T) ⊗ PT | g(Y, T). To achieve
this, we introduce the criterion

C(g) = inf
Q∈Qg

K
(
QY, T , PY, T

)
,

where Qg =
{
Q : QT | Y, g(Y, T) = QT | g(Y, T)

}
. We use a splitting

scheme starting from g−1(j) = Aj × Bj, where Aj = {yj} and
Bj = supp

(
PT | Y=yj

)
. The next syntax level is defined as

W = g(Y , f (X,Y)).



What it looks like

First level patterns may be quite faithfull
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First and higher level label images
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Images sharing some higher level syntax label: a cat’s leg label?
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What it looks like

Cat’s head matching from a training set made from one hundred
random windows from image one and a single window centered
on the cat’s head in image two.
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