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Abstract: This monograph deals with adaptive supervised classification,
using tools borrowed from statistical mechanics and information theory,
stemming from the PAC-Bayesian approach pioneered by David McAllester
and applied to a conception of statistical learning theory forged by Vladimir
Vapnik. Using convex analysis on the set of posterior probability measures,
we show how to get local measures of the complexity of the classification
model involving the relative entropy of posterior distributions with respect
to Gibbs posterior measures. We then discuss relative bounds, comparing
the generalization error of two classification rules, showing how the margin
assumption of Mammen and Tsybakov can be replaced with some empirical
measure of the covariance structure of the classification model. We show
how to associate to any posterior distribution an effective temperature relat-
ing it to the Gibbs prior distribution with the same level of expected error
rate, and how to estimate this effective temperature from data, resulting
in an estimator whose expected error rate converges according to the best
possible power of the sample size adaptively under any margin and paramet-
ric complexity assumptions. We describe and study an alternative selection
scheme based on relative bounds between estimators, and present a two
step localization technique which can handle the selection of a parametric
model from a family of those. We show how to extend systematically all the
results obtained in the inductive setting to transductive learning, and use
this to improve Vapnik’s generalization bounds, extending them to the case
when the sample is made of independent non-identically distributed pairs of
patterns and labels. Finally we review briefly the construction of Support
Vector Machines and show how to derive generalization bounds for them,
measuring the complexity either through the number of support vectors or
through the value of the transductive or inductive margin.
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Introduction

Among the possible approaches to pattern recognition, statistical learning
theory has received a lot of attention in the last few years. Although a
realistic pattern recognition scheme involves data pre-processing and post-
processing that need a theory of their own, a central role is often played by
some kind of supervised learning algorithm. This central building block is
the subject we are going to analyse in these notes.

Accordingly, we assume that we have prepared in some way or another a
sample of N labelled patterns (Xi, Yi)Ni=1, where Xi ranges in some pattern
space X and Yi ranges in some finite label set Y. We also assume that we
have devised our experiment in such a way that the couples of random vari-
ables (Xi, Yi) are independent (but not necessarily equidistributed). Here,
randomness should be understood to come from the way the statistician
has planned his experiment. He may for instance have drawn the Xis at
random from some larger population of patterns the algorithm is meant to
be applied to in a second stage. The labels Yi may have been set with the
help of some external expertise (which may itself be faulty or contain some
amount of randomness, so we do not assume that Yi is a function of Xi,
and allow the couple of random variables (Xi, Yi) to follow any kind of joint
distribution). In practice, patterns will be extracted from some high dimen-
sional and highly structured data, such as digital images, speech signals,
DNA sequences, etc. We will not discuss this pre-processing stage here, al-
though it poses crucial problems dealing with segmentation and the choice of
a representation. The aim of supervised classification is to choose some clas-
sification rule f : X → Y which predicts Y from X making as few mistakes
as possible on average.

The choice of f will be driven by a suitable use of the information provided
by the sample (Xi, Yi)Ni=1 on the joint distribution of X and Y . Moreover,
considering all the possible measurable functions f from X to Y would not
be feasible in practice and maybe more importantly not well founded from a
statistical point of view, at least as soon as the pattern space X is large and
little is known in advance about the joint distribution of patterns X and
labels Y . Therefore, we will consider parametrized subsets of classification
rules {fθ : X → Y ; θ ∈ Θm}, m ∈ M , which may be grouped to form a big
parameter set Θ =

⋃
m∈M Θm.

The subject of this monograph is to introduce to statistical learning the-
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6 Introduction

ory, and more precisely to the theory of supervised classification, a number of
technical tools akin to statistical mechanics and information theory, dealing
with the concepts of entropy and temperature. A central task will in partic-
ular be to control the mutual information between an estimated parameter
and the observed sample. The focus will not be directly on the descrip-
tion of the data to be classified, but on the description of the classification
rules. As we want to deal with high dimensional data, we will be bound
to consider high dimensional sets of candidate classification rules, and will
analyse them with tools very similar to those used in statistical mechanics to
describe particle systems with many degrees of freedom. More specifically,
the sets of classification rules will be described by Gibbs measures defined
on parameter sets and depending on the observed sample value. A Gibbs
measure is the special kind of probability measure used in statistical me-
chanics to describe the state of a particle system driven by a given energy
function at some given temperature. Here, Gibbs measures will emerge as
minimizers of the average loss value under entropy (or mutual information)
constraints. Entropy itself, more precisely the Kullback divergence function
between probability measures, will emerge in conjunction with the use of
exponential deviation inequalities: indeed, the log-Laplace transform may
be seen as the Legendre transform of the Kullback divergence function, as
will be stated in Lemma 1.1.3 (page 16).

To fix notation, let (Xi, Yi)Ni=1 be the canonical process on Ω = (X× Y)N

(which means the coordinate process). Let the pattern space be provided
with a sigma-algebra B turning it into a measurable space (X,B). On the
finite label space Y, we will consider the trivial algebra B′ made of all its
subsets. Let M1

+

[
(K×Y)N , (B⊗B′)⊗N

]
be our notation for the set of prob-

ability measures (i.e. of positive measures of total mass equal to 1) on the
measurable space

[
(X× Y)N , (B×B′)⊗N

]
. Once some probability distribu-

tion P ∈M1
+

[
(X× Y)N , (B⊗B′)⊗N

]
is chosen, it turns (Xi, Yi)Ni=1 into the

canonical realization of a stochastic process modelling the observed sample
(also called the training set). We will assume that P =

⊗N
i=1 Pi, where for

each i = 1, . . . , N , Pi ∈ M1
+(X × Y,B ⊗ B′), to reflect the assumption that

we observe independent pairs of patterns and labels. We will also assume
that we are provided with some indexed set of possible classification rules

RΘ =
{
fθ : X→ Y; θ ∈ Θ

}
,

where (Θ,T) is some measurable index set. Assuming some indexation of
the classification rules is just a matter of presentation. Although it leads
to heavier notation, it allows us to integrate over the space of classification
rules as well as over Ω, using the usual formalism of multiple integrals. For
this matter, we will assume that (θ, x) 7→ fθ(x) : (Θ × X,B ⊗ T) → (Y,B′)
is a measurable function.

In many cases, as already mentioned, Θ =
⋃
m∈M Θm will be a finite

(or more generally countable) union of subspaces, dividing the classification
model RΘ =

⋃
m∈M RΘm into a union of sub-models. The importance of
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introducing such a structure has been put forward by V. Vapnik, as a way
to avoid making strong hypotheses on the distribution P of the sample. If
neither the distribution of the sample nor the set of classification rules were
constrained, it is well known that no kind of statistical inference would be
possible. Considering a family of sub-models is a way to provide for adaptive
classification where the choice of the model depends on the observed sample.
Restricting the set of classification rules is more realistic than restricting the
distribution of patterns, since the classification rules are a processing tool
left to the choice of the statistician, whereas the distribution of the patterns
is not fully under his control, except for some planning of the learning ex-
periment which may enforce some weak properties like independence, but
not the precise shapes of the marginal distributions Pi which are as a rule
unknown distributions on some high dimensional space.

In these notes, we will concentrate on general issues concerned with a
natural measure of risk, namely the expected error rate of each classification
rule fθ, expressed as

R(θ) =
1
N

N∑
i=1

P
[
fθ(Xi) 6= Yi

]
. (0.1)

As this quantity is unobserved, we will be led to work with the corresponding
empirical error rate

r(θ, ω) =
1
N

N∑
i=1

1
[
fθ(Xi) 6= Yi

]
. (0.2)

This does not mean that practical learning algorithms will always try to
minimize this criterion. They often on the contrary try to minimize some
other criterion which is linked with the structure of the problem and has
some nice additional properties (like smoothness and convexity, for exam-
ple). Nevertheless, and independently of the precise form of the estimator
θ̂ : Ω→ Θ under study, the analysis of R(θ̂) is a natural question, and often
corresponds to what is required in practice.

Answering this question is not straightforward because, although R(θ) is
the expectation of r(θ), a sum of independent Bernoulli random variables,
R(θ̂) is not the expectation of r(θ̂), because of the dependence of θ̂ on
the sample, and neither is r(θ̂) a sum of independent random variables.
To circumvent this unfortunate situation, some uniform control over the
deviations of r from R is needed.

We will follow the PAC-Bayesian approach to this problem, originated in
the machine learning community and pioneered by McAllester (1998, 1999).
It can be seen as some variant of the more classical approach of M -estimators
relying on empirical process theory — as described for instance in Van de
Geer (2000).

It is built on some general principles:
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• One idea is to embed the set of estimators of the type θ̂ : Ω → Θ
into the larger set of regular conditional probability measures ρ :(
Ω, (B⊗B′)⊗N

)
→M1

+(Θ,T). We will call these conditional probabil-
ity measures posterior distributions, to follow standard terminology.
• A second idea is to measure the fluctuations of ρ with respect to the

sample, using some prior distribution π ∈M1
+(Θ,T), and the Kullback

divergence function K(ρ, π). The expectation P
{
K(ρ, π)

}
measures the

randomness of ρ. The optimal choice of π would be P(ρ), resulting in
a measure of the randomness of ρ equal to the mutual information
between the sample and the estimated parameter drawn from ρ. Any-
how, since P(ρ) is usually not better known than P, we will have to
be content with some less concentrated prior distribution π, result-
ing in some looser measure of randomness, as shown by the identity
P
[
K(ρ, π)

]
= P

{
K
[
ρ,P(ρ)

]}
+ K

[
P(ρ), π

]
.

• A third idea is to analyse the fluctuations of the random process
θ 7→ r(θ) from its mean process θ 7→ R(θ) through the log-Laplace
transform

− 1
λ

log
{∫∫

exp
[
−λr(θ, ω)

]
π(dθ)P(dω)

}
,

as would be done in statistical mechanics, where this is called the
free energy. This transform is well suited to relate minθ∈Θ r(θ) to
infθ∈ΘR(θ), since for large enough values of the parameter λ, cor-
responding to low enough values of the temperature, the system has
small fluctuations around its ground state.
• A fourth idea deals with localization. It consists of considering a prior

distribution π depending on the unknown expected error rate function
R. Thus some central result of the theory will consist in an empiri-
cal upper bound for K

[
ρ, πexp(−βR)

]
, where πexp(−βR), defined by its

density
d

dπ

[
πexp(−βR)

]
=

exp(−βR)
π
[
exp(−βR)

] ,
is a Gibbs distribution built from a known prior distribution π ∈
M1

+(Θ,T), some inverse temperature parameter β ∈ R+ and the ex-
pected error rate R. This bound will in particular be used when ρ is
a posterior Gibbs distribution, of the form πexp(−βr). The general idea
will be to show that in the case when ρ is not too random, in the sense
that it is possible to find a prior (that is non-random) distribution π
such that K(ρ, π) is small, then ρ(r) can be reliably taken for a good
approximation of ρ(R).

This monograph is divided into four chapters. The first deals with the
inductive setting presented in these lines. The second is devoted to relative
bounds. It shows that it is possible to obtain a tighter estimate of the mutual
information between the sample and the estimated parameter by comparing
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prior and posterior Gibbs distributions. It shows how to use this idea to
obtain adaptive model selection schemes under very weak hypotheses.

The third chapter introduces the transductive setting of V. Vapnik (Vap-
nik, 1998), which consists in comparing the performance of classification
rules on the learning sample with their performance on a test sample in-
stead of their average performance. The fourth one is a fast introduction to
Support Vector Machines. It is the occasion to show the implications of the
general results discussed in the three first chapters when some particular
choice is made about the structure of the classification rules.

In the first chapter, two types of bounds are shown. Empirical bounds
are useful to build, compare and select estimators. Non random bounds are
useful to assess the speed of convergence of estimators, relating this speed
to the behaviour of the Gibbs prior expected error rate β 7→ πexp(−βR)(R)
and to covariance factors related to the margin assumption of Mammen
and Tsybakov when a finer analysis is performed. We will proceed from the
most straightforward bounds towards more elaborate ones, built to achieve
a better asymptotic behaviour. In this course towards more sophisticated
inequalities, we will introduce local bounds and relative bounds.

The study of relative bounds is expanded in the third chapter, where
tighter comparisons between prior and posterior Gibbs distributions are
proved. Theorems 2.1.3 (page 72) and 2.2.4 (page 93) present two ways
of selecting some nearly optimal classification rule. They are both proved
to be adaptive in all the parameters under Mammen and Tsybakov margin
assumptions and parametric complexity assumptions. This is done in Corol-
lary 2.1.17 (page 86) of Theorem 2.1.15 (page 85) and in Theorem 2.2.11
(page 110). In the first approach, the performance of a randomized estima-
tor modelled by a posterior distribution is compared with the performance
of a prior Gibbs distribution. In the second approach posterior distributions
are directly compared between themselves (and leads to slightly stronger
results, to the price of using a more complex algorithm). When there are
more than one parametric model, it is appropriate to use also some doubly
localized scheme: two step localization is presented for both approaches, in
Theorems 2.3.2 (page 116) and 2.3.9 (page 131) and provides bounds with a
decreased influence of the number of empirically inefficient models included
in the selection scheme.

We would not like to induce the reader into thinking that the most sophis-
ticated results presented in these first two chapters are necessarily the most
useful ones, they are as a rule only more efficient asymptotically, whereas,
being more involved, they use looser constants leading to less precision for
small sample sizes. In practice whether a sample is to be considered small is
a question of the ratio between the number of examples and the complexity
(roughly speaking the number of parameters) of the model used for classifica-
tion. Since our aim here is to describe methods appropriate for complex data
(images, speech, DNA, . . . ), we suspect that practitioners wanting to make
use of our proposals will often be confronted with small sample sizes; thus
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we would advise them to try the simplest bounds first and only afterwards
see whether the asymptotically better ones can bring some improvement.

We would also like to point out that the results of the first two chapters
are not of a purely theoretical nature: posterior parameter distributions can
indeed be computed effectively, using Monte Carlo techniques, and there
is well-established know-how about these computations in Bayesian statis-
tics. Moreover, non-randomized estimators of the classical form θ̂ : Ω → Θ
can be efficiently approximated by posterior distributions ρ : Ω → M1

+(Θ)
supported by a fairly narrow neighbourhood of θ̂, more precisely a neigh-
bourhood of the size of the typical fluctuations of θ̂, so that this randomized
approximation of θ̂ will most of the time provide the same classification as
θ̂ itself, except for a small amount of dubious examples for which the clas-
sification provided by θ̂ would anyway be unreliable. This is explained on
page 20.

As already mentioned, the third chapter is about the transductive setting,
that is about comparing the performance of estimators on a training set and
on a test set. We show first that this comparison can be based on a set of
exponential deviation inequalities which parallels the one used in the induc-
tive case. This gives the opportunity to transport all the results obtained in
the inductive case in a systematic way. In the transductive setting, the use
of prior distributions can be extended to the use of partially exchangeable
posterior distributions depending on the union of training and test patterns,
bringing increased possibilities to adapt to the data and giving rise to such
crucial notions of complexity as the Vapnik–Cervonenkis dimension.

Having done so, we more specifically focus on the small sample case, where
local and relative bounds are not expected to be of great help. Introducing
a fictitious (that is unobserved) shadow sample, we study Vapnik-type gen-
eralization bounds, showing how to tighten and extend them with some
original ideas, like making no Gaussian approximation to the log-Laplace
transform of Bernoulli random variables, using a shadow sample of arbi-
trary size. shrinking from the use of any symmetrization trick, and using a
suitable subset of the group of permutations to cover the case of indepen-
dent non-identically distributed data. The culminating result of the third
chapter is Theorem 3.3.3 (page 153), subsequent bounds showing the sep-
arate influence of the above ideas and providing an easier comparison with
Vapnik’s original results. Vapnik-type generalization bounds have a broad
applicability, not only through the concept of Vapnik–Cervonenkis dimen-
sion, but also through the use of compression schemes (Little et al., 1986),
which are briefly described on page 144.

The beginning of the fourth chapter introduces Support Vector Machines,
both in the separable and in the non-separable case (using the box con-
straint). We then describe different types of bounds. We start with com-
pression scheme bounds, to proceed with margin bounds. We begin with
transductive margin bounds, recalling on this occasion in Theorem 4.2.2
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(page 174) the growth bound for a family of classification rules with given
Vapnik–Cervonenkis dimension. In Theorem 4.2.4 (page 176) we give the
usual estimate of the Vapnik–Cervonenkis dimension of a family of separat-
ing hyperplanes with a given transductive margin (we mean by this that the
margin is computed on the union of the training and test sets). We present
an original probabilistic proof inspired by a similar one from Cristianini et
al. (2000), whereas other proofs available usually rely on the informal claim
that the simplex is the worst case. We end this short review of Support
Vector Machines with a discussion of inductive margin bounds. Here the
margin is computed on the training set only, and a more involved combina-
torial lemma, due to Alon et al. (1997) and recalled in Lemma 4.2.6 (page
180) is used. We use this lemma and the results of the third chapter to
establish a bound depending on the margin of the training set alone.

In appendix, we finally discuss the textbook example of classification by
thresholding: in this setting, each classification rule is built by thresholding
a series of measurements and taking a decision based on these thresholded
values. This relatively simple example (which can be considered as an in-
troduction to the more technical case of classification trees) can be used to
give more flesh to the results of the first three chapters.

It is a pleasure to end this introduction with my greatest thanks to An-
thony Davison, for his careful reading of the manuscript and his numerous
suggestions.
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Chapter 1

Inductive PAC-Bayesian
learning

The setting of inductive inference (as opposed to transductive inference to
be discussed later) is the one described in the introduction.

When we will have to take the expectation of a random variable Z : Ω→
R as well as of a function of the parameter h : Θ→ R with respect to some
probability measure, we will as a rule use short functional notation instead
of resorting to the integral sign: thus we will write P(Z) for

∫
Ω Z(ω)P(dω)

and π(h) for
∫

Θ h(θ)π(dθ).
A more traditional statistical approach would focus on estimators θ̂ :

Ω → Θ of the parameter θ and be interested on the relationship between
the empirical error rate r(θ̂), defined by equation (0.1, page 7), which is the
number of errors made on the sample, and the expected error rate R(θ̂),
defined by equation (0.2, page 7), which is the expected probability of error
on new instances of patterns. The PAC-Bayesian approach instead chooses
a broader perspective and allows the estimator θ̂ to be drawn at random
using some auxiliary source of randomness to smooth the dependence of
θ̂ on the sample. One way of representing the supplementary randomness
allowed in the choice of θ̂, is to consider what it is usual to call posterior
distributions on the parameter space, that is probability measures ρ : Ω →
M1

+(Θ,T), depending on the sample, or from a technical perspective, regular
conditional (or transition) probability measures. Let us recall that we use the
model described in the introduction: the training sample is modelled by the
canonical process (Xi, Yi)Ni=1 on Ω =

(
X × Y

)N , and a product probability
measure P =

⊗N
i=1 Pi on Ω is considered to reflect the assumption that

the training sample is made of independent pairs of patterns and labels.
The transition probability measure ρ, along with P ∈ M1

+(Ω), defines a
probability distribution on Ω×Θ and describes the conditional distribution
of the estimated parameter θ̂ knowing the sample (Xi, Yi)Ni=1.

The main subject of this broadened theory becomes to investigate the
relationship between ρ(r), the average error rate of θ̂ on the training sample,

13



14 Chapter 1. Inductive PAC-Bayesian learning

and ρ(R), the expected error rate of θ̂ on new samples. The first step towards
using some kind of thermodynamics to tackle this question, is to consider the
Laplace transform of ρ(R)− ρ(r), a well known provider of non-asymptotic
deviation bounds. This transform takes the form

P
{

exp
[
λ
[
ρ(R)− ρ(r)

]]}
,

where some inverse temperature parameter λ ∈ R+, as a physicist would
call it, is introduced. This Laplace transform would be easy to bound if ρ
did not depend on ω ∈ Ω (namely on the sample), because ρ(R) would then
be non-random, and

ρ(r) =
1
N

N∑
i=1

ρ
[
Yi 6= fθ(Xi)

]
,

would be a sum of independent random variables. It turns out, and this will
be the subject of the next section, that this annoying dependence of ρ on ω
can be quantified, using the inequality

ρ(R)− ρ(r) ≤ λ−1 log
{
π
[
exp
[
λ(R− r)

]]}
+ λ−1K(ρ, π),

which holds for any probability measure π ∈M1
+(Θ) on the parameter space;

for our purpose it will be appropriate to consider a prior distribution π
that is non-random, as opposed to ρ, which depends on the sample. Here,
K(ρ, π) is the Kullback divergence of ρ from π, whose definition will be
recalled when we will come to technicalities; it can be seen as an upper
bound for the mutual information between the (Xi, Yi)Ni=1 and the estimated
parameter θ̂ . This inequality will allow us to relate the penalized difference
ρ(R)−ρ(r)−λ−1K(ρ, π) with the Laplace transform of sums of independent
random variables.

1.1. Basic inequality

Let us now come to the details of the investigation sketched above. The
first thing we will do is to study the Laplace transform of R(θ) − r(θ), as
a starting point for the more general study of ρ(R) − ρ(r): it corresponds
to the simple case where θ̂ is not random at all, and therefore where ρ is a
Dirac mass at some deterministic parameter value θ.

In the setting described in the introduction, let us consider the Bernoulli
random variables σi(θ) = 1

[
Yi 6= fθ(Xi)

]
, which indicates whether the clas-

sification rule fθ made an error on the ith component of the training sample.
Using independence and the concavity of the logarithm function, it is readily
seen that for any real constant λ
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log
{
P
{

exp
[
−λr(θ)

]}}
=

N∑
i=1

log
{
P
[
exp
(
− λ
N σi

)]}
≤ N log

{
1
N

N∑
i=1

P
[
exp
(
− λ
N σi

)]}
.

The right-hand side of this inequality is the log-Laplace transform of a
Bernoulli distribution with parameter 1

N

∑N
i=1P(σi) = R(θ). As any Bernoulli

distribution is fully defined by its parameter, this log-Laplace transform is
necessarily a function of R(θ). It can be expressed with the help of the family
of functions

Φa(p) = −a−1 log
{

1−
[
1− exp(−a)

]
p
}
, a ∈ R, p ∈ (0, 1). (1.1)

It is immediately seen that Φa is an increasing one-to-one mapping of the
unit interval onto itself, and that it is convex when a > 0, concave when
a < 0 and can be defined by continuity to be the identity when a = 0.
Moreover the inverse of Φa is given by the formula

Φ−1
a (q) =

1− exp(−aq)
1− exp(−a)

, a ∈ R, q ∈ (0, 1).

This formula may be used to extend Φ−1
a to q ∈ R, and we will use this

extension without further notice when required.
Using this notation, the previous inequality becomes

log
{
P
{

exp
[
−λr(θ)

]}}
≤ −λΦ λ

N

[
R(θ)

]
, proving

Lemma 1.1.1. For any real constant λ and any parameter θ ∈ Θ,

P

{
exp
{
λ
[
Φ λ
N

[
R(θ)

]
− r(θ)

]}}
≤ 1.

In previous versions of this study, we had used some Bernstein bound, in-
stead of this lemma. Anyhow, as it will turn out, keeping the log-Laplace
transform of a Bernoulli instead of approximating it provides simpler and
tighter results.

Lemma 1.1.1 implies that for any constants λ ∈ R+ and ε ∈)0, 1),

P

[
Φ λ
N

[
R(θ)

]
+

log(ε)
λ
≤ r(θ)

]
≥ 1− ε.

Choosing λ ∈ arg max
R+

Φ λ
N

[
R(θ)

]
+

log(ε)
λ

, we deduce

Lemma 1.1.2. For any ε ∈)0, 1), any θ ∈ Θ,

P

{
R(θ) ≤ inf

λ∈R+

Φ−1
λ
N

[
r(θ)− log(ε)

λ

]}
≥ 1− ε.
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We will illustrate throughout these notes the bounds we prove with a small
numerical example: in the case where N = 1000, ε = 0.01 and r(θ) = 0.2,
we get with a confidence level of 0.99 that R(θ) ≤ .2402, this being obtained
for λ = 234.

Now, to proceed towards the analysis of posterior distributions, let us
put Uλ(θ, ω) = λ

[
Φ λ
N

[
R(θ)

]
− r(θ, ω)

]
for short, and let us consider some

prior probability distribution π ∈M1
+(Θ,T). A proper choice of π will be an

important question, underlying much of the material presented in this mono-
graph, so for the time being, let us only say that we will let this choice be as
open as possible by writing inequalities which hold for any choice of π . Let
us insist on the fact that when we say that π is a prior distribution, we mean
that it does not depend on the training sample (Xi, Yi)Ni=1. The quantity of
interest to obtain the bound we are looking for is log

{
P
[
π
[
exp(Uλ)

]]}
.

Using Fubini’s theorem for non-negative functions, we see that

log
{
P
[
π
[
exp(Uλ)

]]}
= log

{
π
[
P
[
exp(Uλ)

]]}
≤ 0.

To relate this quantity to the expectation ρ(Uλ) with respect to any poste-
rior distribution ρ : Ω→M1

+(Θ), we will use the properties of the Kullback
divergence K(ρ, π) of ρ with respect to π, which is defined as

K(ρ, π) =


∫

log( dρdπ )dρ, when ρ is absolutely continuous
with respect to π,

+∞, otherwise.

The following lemma shows in which sense the Kullback divergence function
can be thought of as the dual of the log-Laplace transform.

Lemma 1.1.3. For any bounded measurable function h : Θ → R, and any
probability distribution ρ ∈M1

+(Θ) such that K(ρ, π) <∞,

log
{
π
[
exp(h)

]}
= ρ(h)−K(ρ, π) + K(ρ, πexp(h)),

where by definition
dπexp(h)

dπ
=

exp[h(θ)]
π[exp(h)]

. Consequently

log
{
π
[
exp(h)]

]}
= sup

ρ∈M1
+(Θ)

ρ(h)−K(ρ, π).

The proof is just a matter of writing down the definition of the quanti-
ties involved and using the fact that the Kullback divergence function is
non-negative, and can be found in Catoni (2004, page 160). In the duality
between measurable functions and probability measures, we thus see that
the log-Laplace transform with respect to π is the Legendre transform of
the Kullback divergence function with respect to π. Using this, we get

P
{

exp
{

sup
ρ∈M1

+(Θ)

ρ[Uλ(θ)]−K(ρ, π)
}}
≤ 1,
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which, combined with the convexity of λΦ λ
N

, proves the basic inequality we
were looking for.

Theorem 1.1.4. For any real constant λ,

P

{
exp
[

sup
ρ∈M1

+(Θ)

λ
[
Φ λ
N

[
ρ(R)

]
− ρ(r)

]
−K(ρ, π)

]}
≤ P

{
exp
[

sup
ρ∈M1

+(Θ)

λ
[
ρ
(
Φ λ
N
◦R
)
− ρ(r)

]
−K(ρ, π)

]}
≤ 1.

We insist on the fact that in this theorem, we take a supremum in ρ ∈
M1

+(Θ) inside the expectation with respect to P, the sample distribution.
This means that the proved inequality holds for any ρ depending on the
training sample, that is for any posterior distribution: indeed, measurability
questions set aside,

P

{
exp
[

sup
ρ∈M1

+(Θ)

λ
[
ρ
[
Uλ(θ)

]
−K(ρ, π)

]]}
= sup

ρ:Ω→M1
+(Θ)

P

{
exp
[
λ
[
ρ
[
Uλ(θ)

]
−K(ρ, π)

]]]}
,

and more formally,

sup
ρ:Ω→M1

+(Θ)

P

{
exp
[
λ
[
ρ
[
Uλ(θ)

]
−K(ρ, π)

]]]}
≤ P

{
exp
[

sup
ρ∈M1

+(Θ)

λ
[
ρ
[
Uλ(θ)

]
−K(ρ, π)

]]}
,

where the supremum in ρ taken in the left-hand side is restricted to regular
conditional probability distributions.

The following sections will show how to use this theorem.

1.2. Non local bounds

At least three sorts of bounds can be deduced from Theorem 1.1.4.
The most interesting ones with which to build estimators and tune pa-

rameters, as well as the first that have been considered in the development
of the PAC-Bayesian approach, are deviation bounds. They provide an em-
pirical upper bound for ρ(R) — that is a bound which can be computed
from observed data — with some probability 1− ε, where ε is a presumably
small and tunable parameter setting the desired confidence level.

Anyhow, most of the results about the convergence speed of estimators
to be found in the statistical literature are concerned with the expectation
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P
[
ρ(R)

]
, therefore it is also enlightening to bound this quantity. In order

to know at which rate it may be approaching infΘR, a non-random upper
bound is required, which will relate the average of the expected risk P

[
ρ(R)

]
with the properties of the contrast function θ 7→ R(θ).

Since the values of constants do matter a lot when a bound is to be used
to select between various estimators using classification models of various
complexities, a third kind of bound, related to the first, may be considered
for the sake of its hopefully better constants: we will call them unbiased
empirical bounds, to stress the fact that they provide some empirical quan-
tity whose expectation under P can be proved to be an upper bound for
P
[
ρ(R)

]
, the average expected risk. The price to pay for these better con-

stants is of course the lack of formal guarantee given by the bound: two
random variables whose expectations are ordered in a certain way may very
well be ordered in the reverse way with a large probability, so that basing
the estimation of parameters or the selection of an estimator on some unbi-
ased empirical bound is a hazardous business. Anyhow, since it is common
practice to use the inequalities provided by mathematical statistical theory
while replacing the proven constants with smaller values showing a better
practical efficiency, considering unbiased empirical bounds as well as devia-
tion bounds provides an indication about how much the constants may be
decreased while not violating the theory too much.

1.2.1. Unbiased empirical bounds. Let ρ : Ω→M1
+(Θ) be some fixed

(and arbitrary) posterior distribution, describing some randomized estima-
tor θ̂ : Ω → Θ. As we already mentioned, in these notes a posterior distri-
bution will always be a regular conditional probability measure. By this we
mean that

• for any A ∈ T, the map ω 7→ ρ(ω,A) :
(
Ω, (B ⊗ B′)⊗N

)
→ R+ is

assumed to be measurable;
• for any ω ∈ Ω, the map A 7→ ρ(ω,A) : T → R+ is assumed to be a

probability measure.

We will also assume without further notice that the σ-algebras we deal
with are always countably generated. The technical implications of these
assumptions are standard and discussed for instance in Catoni (2004, pages
50-54), where, among other things, a detailed proof of the decomposition of
the Kullback Liebler divergence is given.

Let us restrict to the case when the constant λ is positive. We get from
Theorem 1.1.4 that

exp
[
λ
{

Φ λ
N

[
P
[
ρ(R)

]]
− P

[
ρ(r)

]}
− P

[
K(ρ, π)

]]
≤ 1, (1.2)

where we have used the convexity of the exp function and of Φ λ
N

. Since we
have restricted our attention to positive values of the constant λ, equation
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(1.2) can also be written

P
[
ρ(R)

]
≤ Φ−1

λ
N

{
P
[
ρ(r) + λ−1K(ρ, π)

]}
,

leading to

Theorem 1.2.1. For any posterior distribution ρ : Ω → M1
+(Θ), for any

positive parameter λ,

P
[
ρ(R)

]
≤

1− exp
[
−N−1P

[
λρ(r) + K(ρ, π)

]]
1− exp(− λ

N )

≤ P

{
λ

N
[
1− exp(− λ

N )
] [ρ(r) +

K(ρ, π)
λ

]}
.

The last inequality provides the unbiased empirical upper bound for ρ(R) we
were looking for, meaning that the expectation of

λ

N
[
1−exp(− λ

N
)
] [ρ(r) + K(ρ,π)

λ

]
is larger than the expectation of ρ(R). Let us

notice that 1 ≤ λ

N
[
1−exp(− λ

N
)
] ≤ [1 − λ

2N

]−1 and therefore that this coeffi-

cient is close to 1 when λ is significantly smaller than N .
If we are ready to believe in this bound (although this belief is not mathe-

matically well founded, as we already mentioned), we can use it to optimize
λ and to choose ρ. While the optimal choice of ρ when λ is fixed is, according
to Lemma 1.1.3 (page 16), to take it equal to πexp(−λr), a Gibbs posterior
distribution, as it is sometimes called, we may for computational reasons be
more interested in choosing ρ in some other class of posterior distributions.

For instance, our real interest may be to select some non-randomized
estimator from a family θ̂m : Ω → Θm, m ∈ M , of possible ones, where
Θm are measurable subsets of Θ and where M is an arbitrary (non nec-
essarily countable) index set. We may for instance think of the case when
θ̂m ∈ arg minΘm r. We may slightly randomize the estimators to start with,
considering for any θ ∈ Θm and any m ∈M ,

∆m(θ) =
{
θ′ ∈ Θm :

[
fθ′(Xi)

]N
i=1

=
[
fθ(Xi)

]N
i=1

}
,

and defining ρm by the formula

dρm
dπ

(θ) =
1
[
θ ∈ ∆m(θ̂m)

]
π
[
∆m(θ̂m)

] .

Our posterior minimizes K(ρ, π) among those distributions whose support
is restricted to the values of θ in Θm for which the classification rule fθ is
identical to the estimated one fbθm on the observed sample. Presumably, in
many practical situations, fθ(x) will be ρm almost surely identical to fbθm(x)
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when θ is drawn from ρm, for the vast majority of the values of x ∈ X and
all the sub-models Θm not plagued with too much overfitting (since this is
by construction the case when x ∈ {Xi : i = 1, . . . , N}). Therefore replacing
θ̂m with ρm can be expected to be a minor change in many situations. This
change by the way can be estimated in the (admittedly not so common) case
when the distribution of the patterns (Xi)Ni=1 is known. Indeed, introducing
the pseudo distance

D(θ, θ′) =
1
N

N∑
i=1

P
[
fθ(Xi) 6= fθ′(Xi)

]
, θ, θ′ ∈ Θ, (1.3)

one immediately sees that R(θ′) ≤ R(θ) + D(θ, θ′), for any θ, θ′ ∈ Θ, and
therefore that

R(θ̂m) ≤ ρm(R) + ρm
[
D(·, θ̂m)

]
.

Let us notice also that in the case where Θm ⊂ Rdm , and R happens to
be convex on ∆m(θ̂m), then ρm(R) ≥ R

[∫
θρm(dθ)

]
, and we can replace

θ̂m with θ̃m =
∫
θρm(dθ), and obtain bounds for R(θ̃m). This is not a very

heavy assumption about R, in the case where we consider θ̂m ∈ arg minΘm r.
Indeed, θ̂m, and therefore ∆m(θ̂m), will presumably be close to arg minΘm R,
and requiring a function to be convex in the neighbourhood of its minima
is not a very strong assumption.

Since r(θ̂m) = ρm(r), and K(ρm, π) = − log
{
π
[
∆m(θ̂m)

]}
, our unbiased

empirical upper bound in this context reads as

λ

N
[
1− exp(− λ

N )
] {r(θ̂m)−

log
{
π
[
∆m(θ̂m)

]}
λ

}
.

Let us notice that we obtain a complexity factor − log
{
π
[
∆m(θ̂m)

]}
which

may be compared with the Vapnik–Cervonenkis dimension. Indeed, in the
case of binary classification, when using a classification model with Vapnik–
Cervonenkis dimension not greater than hm, that is when any subset of X

which can be split in any arbitrary way by some classification rule fθ of the
model Θm has at most hm points, then{

∆m(θ) : θ ∈ Θm

}
is a partition of Θm with at most

(
eN
hm

)hm
components: these facts, if not

already familiar to the reader, will be proved in Theorems 4.2.2 and 4.2.3
(page 174). Therefore

inf
θ∈Θm

− log
{
π
[
∆m(θ)

]}
≤ hm log

(
eN

hm

)
− log

[
π(Θm)

]
.

Thus, if the model and prior distribution are well suited to the classification
task, in the sense that there is more “room” (where room is measured with
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π) between the two clusters defined by θ̂m than between other partitions of
the sample of patterns (Xi)Ni=1, then we will have

− log
{
π
[
∆m(θ̂)

]}
≤ hm log

(
eN

hm

)
− log

[
π(Θm)

]
.

An optimal value m̂ may be selected so that

m̂ ∈ arg min
m∈M

{
inf
λ∈R+

λ

N
[
1− exp(− λ

N )
] (r(θ̂m)−

log
{
π
[
∆m(θ̂m)

]}
λ

)}
.

Since ρbm is still another posterior distribution, we can be sure that

P
{
R(θ̂bm)− ρbm[D(·, θ̂bm)

]}
≤ P

[
ρbm(R)

]
≤ inf

λ∈R+

P

{
λ

N
[
1− exp(− λ

N )
] (r(θ̂bm)−

log
{
π
[
∆bm(θ̂bm)

]}
λ

)}
.

Taking the infimum in λ inside the expectation with respect to P would
be possible at the price of some supplementary technicalities and a slight
increase of the bound that we prefer to postpone to the discussion of devia-
tion bounds, since they are the only ones to provide a rigorous mathematical
foundation to the adaptive selection of estimators.

1.2.2. Optimizing explicitly the exponential parameter λ. In this
section we address some technical issues we think helpful to the understand-
ing of Theorem 1.2.1 (page 19): namely to investigate how the upper bound
it provides could be optimized, or at least approximately optimized, in λ. It
turns out that this can be done quite explicitly.

So we will consider in this discussion the posterior distribution ρ : Ω →
M1

+(Θ) to be fixed, and our aim will be to eliminate the constant λ from
the bound by choosing its value in some nearly optimal way as a function of
P
[
ρ(r)

]
, the average of the empirical risk, and of P

[
K(ρ, π)

]
, which controls

overfitting.
Let the bound be written as

ϕ(λ) =
[
1− exp(− λ

N )
]−1

{
1− exp

[
− λ
NP
[
ρ(r)

]
−N−1P

[
K(ρ, π)

]]}
.

We see that

N
∂

∂λ
log
[
ϕ(λ)

]
=

P
[
ρ(r)

]
exp
[
λ
NP
[
ρ(r)

]
+N−1P

[
K(ρ, π)

]]
− 1
− 1

exp( λN )− 1
.

Thus, the optimal value for λ is such that[
exp( λN )− 1

]
P
[
ρ(r)

]
= exp

[
λ
NP
[
ρ(r)

]
+N−1P

[
K(ρ, π)

]]
− 1.
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Assuming that 1 � λ
NP
[
ρ(r)

]
� P[K(ρ,π)]

N , and keeping only higher order
terms, we are led to choose

λ =

√
2NP

[
K(ρ, π)

]
P
[
ρ(r)

]{
1− P

[
ρ(r)

]} ,
obtaining

Theorem 1.2.2. For any posterior distribution ρ : Ω→M1
+(Θ),

P
[
ρ(R)

]
≤

1− exp
{
−
√

2P[K(ρ,π)]P[ρ(r)]
N{1−P[ρ(r)]} −

P[K(ρ,π)]
N

}
1− exp

{
−
√

2P[K(ρ,π)]
NP[ρ(r)]{1−P[ρ(r)]}

} .

This result of course is not very useful in itself, since neither of the two
quantities P

[
ρ(r)

]
and P

[
K(ρ, π)

]
are easy to evaluate. Anyhow it gives a

hint that replacing them boldly with ρ(r) and K(ρ, π) could produce some-
thing close to a legitimate empirical upper bound for ρ(R). We will see in
the subsection about deviation bounds that this is indeed essentially true.

Let us remark that in the third chapter of this monograph, we will see
another way of bounding

inf
λ∈R+

Φ−1
λ
N

(
q +

d

λ

)
, leading to

Theorem 1.2.3. For any prior distribution π ∈M1
+(Θ), for any posterior

distribution ρ : Ω→M1
+(Θ),

P
[
ρ(R)

]
≤

(
1 +

2P
[
K(ρ, π)

]
N

)−1{
P
[
ρ(r)

]
+
P
[
K(ρ, π)

]
N

+

√
2P
[
K(ρ, π)

]
P
[
ρ(r)

]{
1− P

[
ρ(r)

]}
N

+
P
[
K(ρ, π)

]2
N2

}
,

as soon as P
[
ρ(r)

]
+

√
P
[
K(ρ, π)

]
2N

≤ 1
2
,

and P
[
ρ(R)

]
≤ P

[
ρ(r)

]
+

√
P
[
K(ρ, π)

]
2N

otherwise.

This theorem enlightens the influence of three terms on the average expected
risk:
• the average empirical risk, P

[
ρ(r)

]
, which as a rule will decrease as the

size of the classification model increases, acts as a bias term, grasping the
ability of the model to account for the observed sample itself;
• a variance term 1

NP
[
ρ(r)

]{
1− P

[
ρ(r)

]}
is due to the random fluctua-

tions of ρ(r);
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• a complexity term P
[
K(ρ, π)

]
, which as a rule will increase with the size

of the classification model, eventually acts as a multiplier of the variance
term.

We observed numerically that the bound provided by Theorem 1.2.2 is
better than the more classical Vapnik-like bound of Theorem 1.2.3. For in-
stance, when N = 1000, P

[
ρ(r)

]
= 0.2 and P

[
K(ρ, π)

]
= 10, Theorem 1.2.2

gives a bound lower than 0.2604, whereas the more classical Vapnik-like ap-
proximation of Theorem 1.2.3 gives a bound larger than 0.2622. Numerical
simulations tend to suggest the two bounds are always ordered in the same
way, although this could be a little tedious to prove mathematically.

1.2.3. Non random bounds. It is time now to come to less tentative
results and see how far is the average expected error rate P

[
ρ(R)

]
from its

best possible value infΘR.
Let us notice first that

λρ(r) + K(ρ, π) = K(ρ, πexp(−λr))− log
{
π
[
exp(−λr)

]}
.

Let us remark moreover that r 7→ log
[
π
[
exp(−λr)

]]
is a convex functional,

a property which from a technical point of view can be dealt with in the
following way:

P
{

log
[
π
[
exp(−λr)

]]}
= P

{
sup

ρ∈M1
+(Θ)

−λρ(r)−K(ρ, π)
}

≥ sup
ρ∈M1

+(Θ)

P
{
−λρ(r)−K(ρ, π)

}
= sup

ρ∈M1
+(Θ)

−λρ(R)−K(ρ, π)

= log
{
π
[
exp(−λR)

]}
= −

∫ λ
0 πexp(−βR)(R)dβ. (1.4)

These remarks applied to Theorem 1.2.1 lead to

Theorem 1.2.4. For any posterior distribution ρ : Ω → M1
+(Θ), for any

positive parameter λ,

P
[
ρ(R)

]
≤

1− exp
{
− 1
N

∫ λ
0 πexp(−βR)(R)dβ − 1

NP
[
K(ρ, πexp(−λr))

]}
1− exp(− λ

N )

≤ 1
N
[
1− exp(− λ

N )
]{∫ λ

0 πexp(−βR)(R)dβ + P
[
K(ρ, πexp(−λr))

]}
.

This theorem is particularly well suited to the case of the Gibbs poste-
rior distribution ρ = πexp(−λr), where the entropy factor cancels and where
P
[
πexp(−λr)(R)

]
is shown to get close to infΘR when N goes to +∞, as soon

as λ/N goes to 0 while λ goes to +∞.
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We can elaborate on Theorem 1.2.4 and define a notion of dimension of
(Θ, R), with margin η ≥ 0 putting

dη(Θ, R) = sup
β∈R+

β
[
πexp(−βR)(R)− ess inf

π
R− η

]
≤ − log

{
π
[
R ≤ ess inf

π
R+ η

]}
. (1.5)

This last inequality can be established by the chain of inequalities:

βπexp(−βR)(R) ≤
∫ β

0 πexp(−γR)(R)dγ = − log
{
π
[
exp(−βR)

]}
≤ β

(
ess inf

π
R+ η

)
− log

[
π
(
R ≤ ess inf

π
R+ η

)]
,

where we have used successively the fact that λ 7→ πexp(−λR)(R) is decreasing
(because it is the derivative of the concave function λ 7→ − log

{
π
[
exp(−λR)

]}
)

and the fact that the exponential function takes positive values.
In typical “parametric” situations d0(Θ, R) will be finite, and in all cir-

cumstances dη(Θ, R) will be finite for any η > 0 (this is a direct consequence
of the definition of the essential infimum). Using this notion of dimension,
we see that∫ λ

0
πexp(−βR)(R)dβ ≤ λ

(
ess inf

π
R+ η

)
+
∫ λ

0

[
dη
β
∧ (1− ess inf

π
R− η)

]
dβ

= λ
(
ess inf

π
R+ η

)
+ dη(Θ, R) log

[
eλ

dη(Θ, R)
(
1− ess inf

π
R− η

)]
.

This leads to

Corollary 1.2.5 With the above notation, for any margin η ∈ R+, for
any posterior distribution ρ : Ω→M1

+(Θ),

P
[
ρ(R)

]
≤ inf

λ∈R+

Φ−1
λ
N

[
ess inf

π
R+ η +

dη
λ

log
(
eλ

dη

)
+
P
{
K
[
ρ, πexp(−λr)

]}
λ

]
.

If one wants a posterior distribution with a small support, the theorem
can also be applied to the case when ρ is obtained by truncating πexp(−λr)
to some level set to reduce its support: let Θp = {θ ∈ Θ : r(θ) ≤ p}, and let
us define for any q ∈)0, 1) the level pq = inf{p : πexp(−λr)(Θp) ≥ q}, let us
then define ρq by its density

dρq
dπexp(−λr)

(θ) =
1(θ ∈ Θpq)

πexp(−λr)(Θpq)
,
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then ρ0 = πexp(−λr) and for any q ∈ (0, 1(,

P
[
ρq(R)

]
≤

1− exp
{
− 1
N

∫ λ
0 πexp(−βR)(R)dβ − log(q)

N

}
1− exp(− λ

N )

≤ 1
N
[
1− exp(− λ

N )
]{∫ λ

0 πexp(−βR)(R)dβ − log(q)
}
.

1.2.4. Deviation bounds. They provide results holding under the dis-
tribution P of the sample with probability at least 1 − ε, for any given
confidence level, set by the choice of ε ∈)0, 1(. Using them is the only way
to be quite (i.e. with probability 1− ε) sure to do the right thing, although
this right thing may be over-pessimistic, since deviation upper bounds are
larger than corresponding non-biased bounds.

Starting again from Theorem 1.1.4 (page 17), and using Markov’s inequal-
ity P

[
exp(h) ≥ 1

]
≤ P

[
exp(h)

]
, we obtain

Theorem 1.2.6. For any positive parameter λ, with P probability at least
1− ε, for any posterior distribution ρ : Ω→M1

+(Θ),

ρ(R) ≤ Φ−1
λ
N

{
ρ(r) +

K(ρ, π)− log(ε)
λ

}

=
1− exp

{
−λρ(r)

N
− K(ρ, π)− log(ε)

N

}
1− exp

(
− λ
N

)
≤ λ

N
[
1− exp

(
− λ
N

)] [ρ(r) +
K(ρ, π)− log(ε)

λ

]
.

We see that for a fixed value of the parameter λ, the upper bound is
optimized when the posterior is chosen to be the Gibbs distribution ρ =
πexp(−λr).

In this theorem, we have bounded ρ(R), the average expected risk of an
estimator θ̂ drawn from the posterior ρ. This is what we will do most of the
time in this study. This is the error rate we will get if we classify a large
number of test patterns, drawing a new θ̂ for each one. However, we can also
be interested in the error rate we get if we draw only one θ̂ from ρ and use
this single draw of θ̂ to classify a large number of test patterns. This error
rate is R(θ̂). To state a result about its deviations, we can start back from
Lemma 1.1.1 (page 15) and integrate it with respect to the prior distribution
π to get for any real constant λ

P

{
π

[
exp
{
λ
[
Φ λ
N

(
R
)
− r
]}]}

≤ 1.

For any posterior distribution ρ : Ω→M1
+(Θ), this can be rewritten as

P

{
ρ

[
exp
{
λ
[
Φ λ
N

(
R
)
− r
]
− log

( dρ
dπ

)
+ log(ε)

]}]}
≤ ε,
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proving

Theorem 1.2.7 For any positive real parameter λ, for any posterior distri-
bution ρ : Ω→M1

+(Θ), with Pρ probability at least 1− ε,

R(θ̂ ) ≤ Φ−1
λ
N

{
r(θ̂ ) + λ−1 log

(
ε−1 dρ

dπ

)}
≤ λ

N
[
1− exp(− λ

N )
][r(θ̂ ) + λ−1 log

(
ε−1 dρ

dπ

)]
.

Let us remark that the bound provided here is the exact counterpart of the
bound of Theorem 1.2.6, since log

( dρ
dπ

)
appears as a disintegrated version of

the divergence K(ρ, π). The parallel between the two theorems is particularly
striking in the special case when ρ = πexp(−λr). Indeed Theorem 1.2.6 proves
that with P probability at least 1− ε,

πexp(−λr)(R) ≤ Φ−1
λ
N

{
−

log
{
π
[
exp
(
−λr

)]}
+ log(ε)

λ

}
,

whereas Theorem 1.2.7 proves that with Pπexp(−λr) probability at least 1−ε

R(θ̂ ) ≤ Φ−1
λ
N

{
−

log
{
π
[
exp
(
−λr

)]}
+ log(ε)

λ

}
,

showing that we get the same deviation bound for πexp(−λr)(R) under P and
for θ̂ under Pπexp(−λr).

We would like to show now how to optimize with respect to λ the bound
given by Theorem 1.2.6 (the same discussion would apply to Theorem 1.2.7).
Let us notice first that values of λ less than 1 are not interesting (because
they provide a bound larger than one, at least as soon as ε ≤ exp(−1)). Let
us consider some real parameter α > 1, and the set Λ = {αk; k ∈ N}, on
which we put the probability measure ν(αk) = [(k + 1)(k + 2)]−1. Applying
Theorem 1.2.6 to λ = αk at confidence level 1 − ε

(k+1)(k+2) , and using a
union bound, we see that with probability at least 1 − ε, for any posterior
distribution ρ,

ρ(R) ≤ inf
λ′∈Λ

Φ−1
λ′
N

ρ(r) +
K(ρ, π)− log(ε) + 2 log

[
log(α2λ′)

log(α)

]
λ′

 .

Now we can remark that for any λ ∈ (1,+∞(, there is λ′ ∈ Λ such that
α−1λ ≤ λ′ ≤ λ. Moreover, for any q ∈ (0, 1), β 7→ Φ−1

β (q) is increasing on
R+. Thus with probability at least 1− ε, for any posterior distribution ρ,

ρ(R) ≤ inf
λ∈(1,∞(

Φ−1
λ
N

{
ρ(r) +

α

λ

[
K(ρ, π)− log(ε) + 2 log

(
log(α2λ)
log(α)

)]}
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= inf
λ∈(1,∞(

1− exp
{
− λ
N ρ(r)− α

N

[
K(ρ, π)− log(ε) + 2 log

(
log(α2λ)
log(α)

)]}
1− exp(− λ

N )
.

Taking the approximately optimal value

λ =

√
2Nα [K(ρ, π)− log(ε)]

ρ(r)[1− ρ(r)]
,

we obtain

Theorem 1.2.8. With probability 1 − ε, for any posterior distribution ρ :
Ω→M1

+(Θ), putting d(ρ, ε) = K(ρ, π)− log(ε),

ρ(R) ≤ inf
k∈N

1− exp
{
−α

k

N
ρ(r)− 1

N

[
d(ρ, ε) + log

[
(k + 1)(k + 2)

]]}
1− exp

(
−α

k

N

)

≤
1− exp

{
−

√
2αρ(r)d(ρ, ε)
N [1− ρ(r)]

− α

N

[
d(ρ, ε) + 2 log

(
log
“
α2
q

2Nαd(ρ,ε)
ρ(r)[1−ρ(r)]

”
log(α)

)]}

1− exp

[
−

√
2αd(ρ, ε)

Nρ(r)[1− ρ(r)]

] .

Moreover with probability at least 1− ε, for any posterior distribution ρ such
that ρ(r) = 0,

ρ(R) ≤ 1− exp
[
−K(ρ, π)− log(ε)

N

]
.

We can also elaborate on the results in an other direction by introducing
the empirical dimension

de = sup
β∈R+

β
[
πexp(−βr)(r)− ess inf

π
r
]
≤ − log

[
π
(
r = ess inf

π
r
)]
. (1.6)

There is no need to introduce a margin in this definition, since r takes at
most N values, and therefore π

(
r = ess infπ r

)
is strictly positive. This leads

to

Corollary 1.2.9. For any positive real constant λ, with P probability at
least 1− ε, for any posterior distribution ρ : Ω→M1

+(Θ),

ρ(R) ≤ Φ−1
λ
N

[
ess inf

π
r +

de
λ

log
(
eλ

de

)
+

K
[
ρ, πexp(−λr)

]
− log(ε)

λ

]
.

We could then make the bound uniform in λ and optimize this parameter
in a way similar to what was done to obtain Theorem 1.2.8.
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1.3. Local bounds

In this section, better bounds will be achieved through a better choice of
the prior distribution. This better prior distribution turns out to depend on
the unknown sample distribution P, and some work is required to circumvent
this and obtain empirical bounds.

1.3.1. Choice of the prior. As mentioned in the introduction, if one
is willing to minimize the bound in expectation provided by Theorem 1.2.1
(page 19), one is led to consider the optimal choice π = P(ρ). However, this
is only an ideal choice, since P is in all conceivable situations unknown. Nev-
ertheless it shows that it is possible through Theorem 1.2.1 to measure the
complexity of the classification model with P

{
K
[
ρ,P(ρ)

]}
, which is nothing

but the mutual information between the random sample (Xi, Yi)Ni=1 and the
estimated parameter θ̂, under the joint distribution Pρ.

In practice, since we cannot choose π = P(ρ), we have to be content
with a flat prior π, resulting in a bound measuring complexity according
to P

[
K(ρ, π)

]
= P

{
K
[
ρ,P(ρ)

]}
+ K

[
P(ρ), π

]
larger by the entropy factor

K
[
P(ρ), π

]
than the optimal one (we are still commenting on Theorem 1.2.1).

If we want to base the choice of π on Theorem 1.2.4 (page 23), and if we
choose ρ = πexp(−λr) to optimize this bound, we will be inclined to choose
some π such that

1
λ

∫ λ
0 πexp(−βR)(R)dβ = − 1

λ
log
{
π
[
exp(−λR)

]}
is as far as possible close to infθ∈ΘR(θ) in all circumstances. To give a more
specific example, in the case when the distribution of the design (Xi)Ni=1 is
known, one can introduce on the parameter space Θ the metric D already
defined by equation (1.3, page 20) (or some available upper bound for this
distance). In view of the fact that R(θ)−R(θ′) ≤ D(θ, θ′), for any θ, θ′ ∈ Θ,
it can be meaningful, at least theoretically, to choose π as

π =
∞∑
k=1

1
k(k + 1)

πk,

where πk is the uniform measure on some minimal (or close to minimal)
2−k-net N(Θ, D, 2−k) of the metric space (Θ, D). With this choice

− 1
λ

log
{
π
[
exp(−λR)

]}
≤ inf

θ∈Θ
R(θ)

+ inf
k

{
2−k +

log(|N(Θ, D, 2−k)|) + log[k(k + 1)]
λ

}
.

Another possibility, when we have to deal with real valued parameters,
meaning that Θ ⊂ Rd, is to code each real component θi ∈ R of θ = (θi)di=1
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to some precision and to use a prior µ which is atomic on dyadic numbers.
More precisely let us parametrize the set of dyadic real numbers as

D =

{
r
[
s,m, p, (bj)

p
j=1

]
= s2m

(
1 +

p∑
j=1

bj2−j
)

: s ∈ {−1,+1},m ∈ Z, p ∈ N, bj ∈ {0, 1}

}
,

where, as can be seen, s codes the sign, m the order of magnitude, p
the precision and (bj)

p
j=1 the binary representation of the dyadic number

r
[
s,m, p, (bj)

p
j=1

]
. We can for instance consider on D the probability distri-

bution

µ
{
r
[
s,m, p, (bj)

p
j=1

]}
=
[
3(|m|+ 1)(|m|+ 2)(p+ 1)(p+ 2)2p

]−1
, (1.7)

and define π ∈ M1
+(Rd) as π = µ⊗d. This kind of “coding” prior distribu-

tion can be used also to define a prior on the integers (by renormalizing
the restriction of µ to integers to get a probability distribution). Using µ
is somehow equivalent to picking up a representative of each dyadic inter-
val, and makes it possible to restrict to the case when the posterior ρ is
a Dirac mass without losing too much (when Θ = (0, 1), this approach is
somewhat equivalent to considering as prior distribution the Lebesgue mea-
sure and using as posterior distributions the uniform probability measures
on dyadic intervals, with the advantage of obtaining non-randomized esti-
mators). When one uses in this way an atomic prior and Dirac masses as
posterior distributions, the bounds proven so far can be obtained through a
simpler union bound argument. This is so true that some of the detractors
of the PAC-Bayesian approach (which, as a newcomer, has sometimes re-
ceived a suspicious greeting among statisticians) have argued that it cannot
bring anything that elementary union bound arguments could not essentially
provide. We do not share of course this derogatory opinion, and while we
think that allowing for non atomic priors and posteriors is worthwhile, we
also would like to stress that the upcoming local and relative bounds could
hardly be obtained with the only help of union bounds.

Although the choice of a flat prior seems at first glance to be the only
alternative when nothing is known about the sample distribution P, the
previous discussion shows that this type of choice is lacking proper localisa-
tion, and namely that we loose a factor K

{
P
[
πexp(−λr)

]
, π
}

, the divergence
between the bound-optimal prior P

[
πexp(−λr)

]
, which is concentrated near

the minima of R in favourable situations, and the flat prior π. Fortunately,
there are technical ways to get around this difficulty and to obtain more
local empirical bounds.
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1.3.2. Unbiased local empirical bounds. The idea is to start with
some flat prior π ∈ M1

+(Θ), and the posterior distribution ρ = πexp(−λr)
minimizing the bound of Theorem 1.2.1 (page 19), when π is used as a prior.
To improve the bound, we would like to use P

[
πexp(−λr)

]
instead of π, and we

are going to make the guess that we could approximate it with πexp(−βR) (we
have replaced the parameter λ with some distinct parameter β to give some
more freedom to our investigation, and also because, intuitively, P

[
πexp(−λr)

]
may be expected to be less concentrated than each of the πexp(−λr) it is
mixing, which suggests that the best approximation of P

[
πexp(−λr)

]
by some

πexp(−βR) may be obtained for some parameter β < λ). We are then led to
look for some empirical upper bound of K

[
ρ, πexp(−βR)

]
. This is happily

provided by the following computation

P
{
K
[
ρ, πexp(−βR)

]}
= P

[
K(ρ, π)

]
+ βP

[
ρ(R)

]
+ log

{
π
[
exp(−βR)

]}
= P

{
K
[
ρ, πexp(−βr)

]}
+ βP

[
ρ(R− r)

]
+ log

{
π
[
exp(−βR)

]}
− P

{
log π

[
exp(−βr)

]}
.

Using the convexity of r 7→ log
{
π
[
exp(−βr)

]}
as in equation (1.4) on page

23, we conclude that

0 ≤ P
{
K
[
ρ, πexp(−βR)

]}
≤ βP

[
ρ(R− r)

]
+ P

{
K
[
ρ, πexp(−βr)

]}
.

This inequality has an interest of its own, since it provides a lower bound
for P

[
ρ(R)

]
. Moreover we can plug it into Theorem 1.2.1 (page 19) applied

to the prior distribution πexp(−βR) and obtain for any posterior distribution
ρ and any positive parameter λ that

Φ λ
N

{
P
[
ρ(R)

]}
≤ P

{
ρ(r) +

β

λ
ρ(R− r) +

1
λ
P
{

K
[
ρ, πexp(−βr)

]}}
.

In view of this, it it convenient to introduce the function

Φ̃a,b(p) = (1− b)−1
[
Φa(p)− bp

]
= −(1− b)−1

{
a−1 log

{
1− p

[
1− exp(−a)

]}
+ bp

}
,

p ∈ (0, 1), a ∈)0,∞(, b ∈ (0, 1(.

This is a convex function of p, moreover

Φ̃′a,b(0) =
{
a−1
[
1− exp(−a)

]
− b
}

(1− b)−1,

showing that it is an increasing one to one convex map of the unit interval
unto itself as soon as b ≤ a−1

[
1 − exp(−a)

]
. Its convexity, combined with

the value of its derivative at the origin, shows that

Φ̃a,b(p) ≥
a−1
[
1− exp(−a)

]
− b

1− b
p.

Using this notation and remarks, we can state
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Theorem 1.3.1. For any positive real constants β and λ such that 0 ≤ β <
N [1− exp(− λ

N )], for any posterior distribution ρ : Ω→M1
+(Θ),

P

{
ρ(r)−

K
[
ρ, πexp(−βr)

]
β

}
≤ P

[
ρ(R)

]
≤ Φ̃−1

λ
N
,β
λ

{
P

[
ρ(r) +

K
[
ρ, πexp(−βr)

]
λ− β

]}
≤ λ− β
N [1− exp(− λ

N )]− β
P

[
ρ(r) +

K
[
ρ, πexp(−βr)

]
λ− β

]
.

Thus (taking λ = 2β), for any β such that 0 ≤ β < N
2 ,

P
[
ρ(R)

]
≤ 1

1− 2β
N

P

{
ρ(r) +

K
[
ρ, πexp(−βr)

]
β

}
.

Note that the last inequality is obtained using the fact that 1− exp(−x) ≥
x− x2

2 , x ∈ R+.

Corollary 1.3.2. For any β ∈ (0, N(,

P
[
πexp(−βr)(r)

]
≤ P

[
πexp(−βr)(R)

]
≤ inf

λ∈(−N log(1− β
N

),∞(

λ− β
N [1− exp(− λ

N )]− β
P
[
πexp(−βr)(r)

]
≤ 1

1− 2β
N

P
[
πexp(−βr)(r)

]
,

the last inequality holding only when β < N
2 .

It is interesting to compare the upper bound provided by this corollary
with Theorem 1.2.1 (page 19) when the posterior is a Gibbs measure ρ =
πexp(−βr). We see that we have got rid of the entropy term K

[
πexp(−βr), π

]
,

but at the price of an increase of the multiplicative factor, which for small
values of β

N grows from (1 − β
2N )−1 (when we take λ = β in Theorem

1.2.1), to (1 − 2β
N )−1. Therefore non-localized bounds have an interest of

their own, and are superseded by localized bounds only in favourable cir-
cumstances (presumably when the sample is large enough when compared
with the complexity of the classification model).

Corollary 1.3.2 shows that when 2β
N is small, πexp(−βr)(r) is a tight ap-

proximation of πexp(−βr)(R) in the mean (since we have an upper bound and
a lower bound which are close together).

Another corollary is obtained by optimizing the bound given by Theorem
1.3.1 in ρ, which is done by taking ρ = πexp(−λr).
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Corollary 1.3.3. For any positive real constants β and λ such that 0 ≤
β < N [1− exp(− λ

N )],

P
[
πexp(−λr)(R)

]
≤ Φ̃−1

λ
N
,β
λ

{
P

[
1

λ− β

∫ λ

β
πexp(−γr)(r)dγ

]}
≤ 1
N [1− exp(− λ

N )]− β
P
[∫ λ
β πexp(−γr)(r)dγ

]
.

Although this inequality gives by construction a better upper bound for
infλ∈R+ P

[
πexp(−λr)(R)

]
than Corollary 1.3.2, it is not easy to tell which

one of the two inequalities is the best to bound P
[
πexp(−λr)(R)

]
for a fixed

(and possibly suboptimal) value of λ, because in this case, one factor is
improved while the other is worsened.

Using the empirical dimension de defined by equation (1.6) on page 27,
we see that

1
λ− β

∫ λ

β
πexp(−γr)(r)dγ ≤ ess inf

π
r + de log

(
λ

β

)
.

Therefore, in the case when we keep the ratio λ
β bounded, we get a better

dependence on the empirical dimension de than in Corollary 1.2.9 (page 27).

1.3.3. Non random local bounds. Let us come now to the localization
of the non-random upper bound given by Theorem 1.2.4 (page 23). Accord-
ing to Theorem 1.2.1 (page 19) applied to the localized prior πexp(−βR),

λΦ λ
N

{
P
[
ρ(R)

]}
≤ P

{
λρ(r) + K(ρ, π) + βρ(R)

}
+ log

{
π
[
exp(−βR)

]}
= P

{
K
[
ρ, πexp(−λr)

]
− log

{
π
[
exp(−λr)

]}
+ βρ(R)

}
+ log

{
π
[
exp(−βR)

]}
≤ P

{
K
[
ρ, πexp(−λr)

]
+βρ(R)

}
−log

{
π
[
exp(−λR)

]}
+log

{
π
[
exp(−βR)

]}
,

where we have used as previously inequality (1.4) (page 23). This proves

Theorem 1.3.4. For any posterior distribution ρ : Ω → M1
+(Θ), for any

real parameters β and λ such that 0 ≤ β < N
[
1− exp(− λ

N )
]
,

P
[
ρ(R)

]
≤ Φ̃−1

λ
N
,β
λ

{
1

λ− β

∫ λ

β
πexp(−γR)(R)dγ + P

[
K
[
ρ, πexp(−λr)

]
λ− β

]}
≤ 1
N
[
1− exp(− λ

N )
]
− β

{∫ λ

β
πexp(−γR)(R)dγ + P

{
K
[
ρ, πexp(−λr)

]}}
.

Let us notice in particular that this theorem contains Theorem 1.2.4 (page
23) which corresponds to the case β = 0. As a corollary, we see also, taking
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ρ = πexp(−λr) and λ = 2β, and noticing that γ 7→ πexp(−γR)(R) is decreasing,
that

P
[
πexp(−λr)(R)

]
≤ inf

β,β<N [1−exp(− λ
N

)]

β

N
[
1− exp(− λ

N )
]
− β

πexp(−βR)(R)

≤ 1
1− λ

N

πexp(−λ
2
R)(R).

We can use this inequality in conjunction with the notion of dimension with
margin η introduced by equation (1.5) on page 24, to see that the Gibbs
posterior achieves for a proper choice of λ and any margin parameter η ≥ 0
(which can be chosen to be equal to zero in parametric situations)

inf
λ
P
[
πexp(−λr)(R)

]
≤ ess inf

π
R+ η +

4dη
N

+ 2

√
2dη
(
ess infπ R+ η

)
N

+
4d2

η

N2
. (1.8)

Deviation bounds to come next will show that the optimal λ can be esti-
mated from empirical data.

Let us propose a little numerical example as an illustration: assuming that
d0 = 10, N = 1000 and ess infπ R = 0.2, we obtain from equation (1.8) that
infλP

[
πexp(−λr)(R)

]
≤ 0.373.

1.3.4. Local deviation bounds. When it comes to deviation bounds,
for technical reasons we will choose a slightly more involved change of prior
distribution and apply Theorem 1.2.6 (page 25) to the prior πexp[−βΦ

− β
N

◦R].

The advantage of tweaking R with the nonlinear function Φ− β
N

will appear in
the search for an empirical upper bound of the local entropy term. Theorem
1.1.4 (page 17), used with the above-mentioned local prior, shows that

P

{
sup

ρ∈M1
+(Θ)

λ
{
ρ
(
Φ λ
N
◦R
)
− ρ(r)

}
−K

[
ρ, πexp(−βΦ

− β
N

◦R)

]}
≤ 1. (1.9)

Moreover

K
[
ρ, πexp[−βΦ

− β
N

◦R]

]
= K

[
ρ, πexp(−βr)

]
+ βρ

[
Φ− β

N
◦R− r

]
+ log

{
π
[
exp
(
−βΦ− β

N
◦R
)]}
− log

{
π
[
exp(−βr)

]}
, (1.10)

which is an invitation to find an upper bound for log
{
π
[
exp
[
−βΦ− λ

N
◦R
]]}
−

log
{
π
[
exp(−βr)

]}
. For conciseness, let us call our localized prior distribu-

tion π, thus defined by its density

dπ

dπ
(θ) =

exp
{
−βΦ− β

N

[
R(θ)

]}
π
{

exp
[
−βΦ− β

N
◦R
]} .
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Applying once again Theorem 1.1.4 (page 17), but this time to −β, we see
that

P

{
exp
[
log
{
π
[
exp
(
−βΦ− β

N
◦R
)]}
− log

{
π
[
exp(−βr)

]}]}
= P

{
exp
[
log
{
π
[
exp
(
−βΦ− β

N
◦R)

)]}
+ inf
ρ∈M1

+(Θ)
βρ(r) + K(ρ, π)

]}
≤ P

{
exp
[
log
{
π
[
exp
(
−βΦ− β

N
◦R)

)]}
+ βπ(r) + K(π, π)

]}
= P

{
exp
[
β
[
π(r)− π

(
Φ− β

N
◦R
)]

+ K(π, π)
]}
≤ 1. (1.11)

Combining equations (1.10) and (1.11) and using the concavity of Φ− β
N

,
we see that with P probability at least 1− ε, for any posterior distribution
ρ : Ω→M1

+(Θ),

0 ≤ K(ρ, π) ≤ K
[
ρ, πexp(−βr)

]
+ β

[
Φ− β

N

[
ρ(R)

]
− ρ(r)

]
− log(ε).

We have proved a lower deviation bound:

Theorem 1.3.5 For any positive real constant β, with P probability at least
1− ε, for any posterior distribution ρ : Ω→M1

+(Θ),

exp
{
β

N

[
ρ(r)−

K[ρ, πexp(−βr)]− log(ε)
β

]}
− 1

exp
( β
N

)
− 1

≤ ρ(R).

We can also obtain a lower deviation bound for θ̂. Indeed equation (1.11)
can also be written as

P

{
πexp(−βr)

[
exp
{
β
[
r − Φ− β

N
◦ R

]}]}
≤ 1.

This means that for any posterior distribution ρ : Ω→M1
+(Θ),

P
{
ρ
[
exp
{
β
[
r − Φ− β

N
◦R
]
− log

( dρ
dπexp(−βr)

)}]}
≤ 1.

We have proved

Theorem 1.3.6 For any positive real constant β, for any posterior distri-
bution ρ : Ω→M1

+(Θ), with Pρ probability at least 1− ε,

R(θ̂ ) ≥ Φ−1

− β
N

[
r(θ̂ )−

log
( dρ
dπexp(−βr)

)
− log(ε)

β

]

=
exp
{
β

N

[
r(θ̂ )−

log
( dρ
dπexp(−βr)

)
− log(ε)

β

]}
− 1

exp
(
β

N

)
− 1

.
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Let us now resume our investigation of the upper deviations of ρ(R).
Using the Cauchy-Schwarz inequality to combine equations (1.9, page 33)
and (1.11, page 34), we obtain

P

{
exp
[

1
2

sup
ρ∈M1

+(Θ)

λρ
(
Φ λ
N
◦R
)
−βρ

(
Φ− β

N
◦R
)
−(λ−β)ρ(r)−K

[
ρ, πexp(−βr)

]]}
= P

{
exp
[

1
2 sup
ρ∈M1

+(Θ)

(
λ
{
ρ
(
Φ λ
N
◦R
)
− ρ(r)

}
−K(ρ, π)

)]
× exp

[
1
2

(
log
{
π
[
exp
(
−βΦ− β

N
◦R
)]}
− log

{
π
[
exp(−βr)

]})]}
≤ P

{
exp
[

sup
ρ∈M1

+(Θ)

(
λ
{
ρ
(
Φ λ
N
◦R
)
− ρ(r)

}
−K(ρ, π)

)]}1/2

×P
{

exp
[(

log
{
π
[
exp
(
−βΦ− β

N
◦R
)]}
− log

{
π
[
exp(−βr)

]})]}1/2

≤ 1.

(1.12)

Thus with P probability at least 1− ε, for any posterior distribution ρ,

λΦ λ
N

[
ρ(R)

]
− βΦ− β

N

[
ρ(R)

]
≤ λρ

(
Φ λ
N
◦ R

)
− βρ

(
Φ− β

N
◦ R

)
≤ (λ− β)ρ(r) + K(ρ, πexp(−βr))− 2 log(ε).

(It would have been more straightforward to use a union bound on devi-
ation inequalities instead of the Cauchy-Schwarz inequality on exponential
moments, anyhow, this would have led to replace −2 log(ε) with the worse
factor 2 log(2

ε ).) Let us now recall that

λΦ λ
N

(p)− βΦ− β
N

(p) = −N log
{

1−
[
1− exp

(
− λ
N

)]
p
}

−N log
{

1 +
[
exp
( β
N

)
− 1
]
p
}
,

and let us put

B = (λ− β)ρ(r) + K
[
ρ, πexp(−βr)

]
− 2 log(ε)

= K
[
ρ, πexp(−λr)

]
+
∫ λ
β πexp(−ξr)(r)dξ − 2 log(ε).

Let us consider moreover the change of variables α = 1 − exp(− λ
N ) and

γ = exp( βN )− 1. We obtain
[
1− αρ(R)

][
1 + γρ(R)

]
≥ exp(−B

N ), leading to

Theorem 1.3.7. For any positive constants α, γ, such that 0 ≤ γ < α < 1,
with P probability at least 1 − ε, for any posterior distribution ρ : Ω →
M1

+(Θ), the bound

M(ρ) = −
log
[
(1− α)(1 + γ)

]
α− γ

ρ(r) +
K(ρ, πexp[−N log(1+γ)r])− 2 log(ε)

N(α− γ)
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=
K
[
ρ, πexp[N log(1−α)r]

]
+
∫ −N log(1−α)

N log(1+γ)
πexp(−ξr)(r)dξ − 2 log(ε)

N(α− γ)
,

is such that

ρ(R) ≤ α− γ
2αγ

(√
1 +

4αγ
(α− γ)2

{
1− exp

[
−(α− γ)M(ρ)

]}
− 1

)
≤M(ρ),

Let us now give an upper bound for R(θ̂ ). Equation (1.12 page 35) can
also be written as

P

{[
πexp(−βr)

{
exp
[
λΦ λ

N
◦ R− βΦ− β

N
◦ R− (λ− β)r

]}] 1
2
}
≤ 1.

This means that for any posterior distribution ρ : Ω→M1
+(Θ),

P

{[
ρ
{

exp
[
λΦ λ

N
◦ R− βΦ− β

N
◦ R− (λ− β)r − log

( dρ
dπexp(−βr)

)]}] 1
2
}
≤ 1.

Using the concavity of the square root function, this inequality can be
weakened to

P

{
ρ

[
exp
{

1
2

[
λΦ λ

N
◦ R− βΦ− β

N
◦ R− (λ− β)r − log

( dρ
dπexp(−βr)

)]}]}
≤ 1.

We have proved

Theorem 1.3.8. For any positive real constants λ and β and for any pos-
terior distribution ρ : Ω→M1

+(Θ), with Pρ probability at least 1− ε,

λΦ λ
N

[
R(θ̂ )

]
− βΦ− β

N

[
R(θ̂ )

]
≤ (λ− β) r(θ̂ ) + log

[
dρ

dπexp(−βr)
(θ̂ )
]
− 2 log(ε).

Putting α = 1− exp
(
− λ
N

)
, γ = exp

( β
N

)
− 1 and

M(θ) = −
log
[
(1− α)(1 + γ)

]
α− γ

r(θ) +
log
[

dρ
dπexp[−N log(1+γ)r]

(θ)
]
− 2 log(ε)

N(α− γ)

=
log
[

dρ
dπexp[N log(1−α)r]

(θ)
]

+
∫ −N log(1−α)

N log(1+γ)
πexp(−ξr)(r) dξ − 2 log(ε)

N(α− γ)
,

we can also, in the case when γ < α, write this inequality as

R(θ̂ ) ≤ α− γ
2αγ

(√
1 +

4αγ
(α− γ)2

{
1− exp

[
−(α− γ)M(θ̂ )

]}
− 1

)
≤M(θ̂).
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It may be enlightening to introduce the empirical dimension de defined
by equation (1.6) on page 27. It provides the upper bound∫ λ

β
πexp(−ξr)(r)dξ ≤ (λ− β) ess inf

π
r + de log

(
λ

β

)
,

which shows that in Theorem 1.3.7 (page 35),

M(ρ) ≤
log
[
(1 + γ)(1− α)

]
γ − α

ess inf
π
r

+
de log

[
− log(1−α)
log(1+γ)

]
+ K

[
ρ, πexp[N log(1−α)r]

]
− 2 log(ε)

N(α− γ)
.

Similarly, in Theorem 1.3.8 above,

M(θ) ≤
log
[
(1 + γ)(1− α)

]
γ − α

ess inf
π
r

+
de log

[
− log(1−α)
log(1+γ)

]
+ log

[
dρ

dπexp[N log(1−α)r]
(θ)
]
− 2 log(ε)

N(α− γ)

Let us give a little numerical illustration: assuming that de = 10, N =
1000, and ess infπ r = 0.2, taking ε = 0.01, α = 0.5 and γ = 0.1, we obtain
from Theorem 1.3.7 πexp[N log(1−α)r](R) ' πexp(−693r)(R) ≤ 0.332 ≤ 0.372,
where we have given respectively the non-linear and the linear bound. This
shows the practical interest of keeping the non-linearity. Optimizing the
values of the parameters α and γ would not have yielded a significantly
lower bound.

The following corollary is obtained by taking λ = 2β and keeping only
the linear bound; we give it for the sake of its simplicity:

Corollary 1.3.9. For any positive real constant β such that exp( βN ) +
exp(−2β

N ) < 2, which is the case when β < 0.48N , with P probability at least
1− ε, for any posterior distribution ρ : Ω→M1

+(Θ),

ρ(R) ≤
βρ(r) + K

[
ρ, πexp(−βr)

]
− 2 log(ε)

N
[
2− exp

( β
N

)
− exp

(
−2β
N

)]
=

∫ 2β
β πexp(−ξr)(r)dξ + K

[
ρ, πexp(−2βr)

]
− 2 log(ε)

N
[
2− exp( βN )− exp(−2β

N )
] .

Let us mention that this corollary applied to the above numerical example
gives πexp(−200r)(R) ≤ 0.475 (when we take β = 100, consistently with the
choice γ = 0.1).
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1.3.5. Partially local bounds. Local bounds are suitable when the
lowest values of the empirical error rate r are reached only on a small part
of the parameter set Θ. When Θ is the disjoint union of sub-models of differ-
ent complexities, the minimum of r will as a rule not be “localized” in a way
that calls for the use of local bounds. Just think for instance of the case when
Θ =

⊔M
m=1 Θm, where the sets Θ1 ⊂ Θ2 ⊂ · · · ⊂ ΘM are nested. In this case

we will have infΘ1 r ≥ infΘ2 r ≥ · · · ≥ infΘM r, although ΘM may be too
large to be the right model to use. In this situation, we do not want to local-
ize the bound completely. Let us make a more specific fanciful but typical
pseudo computation. Just imagine we have a countable collection (Θm)m∈M
of sub-models. Let us assume we are interested in choosing between the es-
timators θ̂m ∈ arg minΘm r, maybe randomizing them (e.g. replacing them
with πmexp(−λr)). Let us imagine moreover that we are in a typically para-
metric situation, where, for some priors πm ∈ M1

+(Θm), m ∈ M , there is a
“dimension” dm such that λ

[
πmexp(−λr)(r) − r(θ̂m)

]
' dm. Let µ ∈ M1

+(M)
be some distribution on the index set M . It is easy to see that (µπ)exp(−λr)
will typically not be properly local, in the sense that typically

(µπ)exp(−λr)(r) =
µ
{
πexp(−λr)(r)π

[
exp(−λr)

]}
µ
{
π
[
exp(−λr)

]}

'

∑
m∈M

[
(inf
Θm

r) + dm
λ

]
exp
[
−λ(inf

Θm
r)− dm log

(
eλ
dm

)]
µ(m)∑

m∈M
exp
[
−λ(inf

Θm
r)− dm log

(
eλ
dm

)]
µ(m)

'
{

inf
m∈M

(inf
Θm

r) + dm
λ log

(
eλ
dm

)
− 1

λ log[µ(m)]
}

+ log
{∑
m∈M

exp
[
−dm log( λ

dm
)
]
µ(m)

}
.

where we have used the approximations

− log
{
π
[
exp(−λr)

]}
=
∫ λ

0
πexp(−βr)(r)dβ

'
∫ λ

0
(inf
Θm

r) +
[
dm
β ∧ 1

]
dβ ' λ(inf

Θm
r) + dm

[
log
(
λ
dm

)
+ 1
]
,

and
∑

m h(m) exp[−h(m)]ν(m)∑
m exp[−h(m)]ν(m)

' inf
m
h(m)− log[ν(m)], ν ∈M1

+(M), taking

ν(m) =
µ(m) exp

[
−dm log

(
λ
dm

)]∑
m′ µ(m′) exp

[
−dm′ log

(
λ
dm′

)] .
These approximations have no pretension to be rigorous or very accurate,

but they nevertheless give the best order of magnitude we can expect in
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typical situations, and show that this order of magnitude is not what we are
looking for: mixing different models with the help of µ spoils the localization,
introducing a multiplier log

(
λ
dm

)
to the dimension dm which is precisely

what we would have got if we had not localized the bound at all. What
we would really like to do in such situations is to use a partially localized
posterior distribution, such as π bmexp(−λr), where m̂ is an estimator of the best
sub-model to be used. While the most straightforward way to do this is to
use a union bound on results obtained for each sub-model Θm, here we are
going to show how to allow arbitrary posterior distributions on the index
set (corresponding to a randomization of the choice of m̂).

Let us consider the framework we just mentioned: let the measurable
parameter set (Θ,T) be a union of measurable sub-models, Θ =

⋃
m∈M Θm.

Let the index set (M,M) be some measurable space (most of the time it will
be a countable set). Let µ ∈ M1

+(M) be a prior probability distribution on
(M,M). Let π : M → M1

+(Θ) be a regular conditional probability measure
such that π(m,Θm) = 1, for any m ∈ M . Let µπ ∈ M1

+(M × Θ) be the
product probability measure defined for any bounded measurable function
h : M ×Θ→ R by

µπ(h) =
∫
m∈M

(∫
θ∈Θ

h(m, θ)π(m, dθ)
)
µ(dm).

For any bounded measurable function h : Ω ×M × Θ → R, let πexp(h) :
Ω ×M → M1

+(Θ) be the regular conditional posterior probability measure
defined by

dπexp(h)

dπ
(m, θ) =

exp
[
h(m, θ)

]
π
[
m, exp(h)

] ,
where consistently with previous notation π(m,h) =

∫
Θ h(m, θ)π(m, dθ) (we

will also often use the less explicit notation π(h)). For short, let

U(θ, ω) = λΦ λ
N

[
R(θ)

]
− βΦ− β

N

[
R(θ)

]
− (λ− β)r(θ, ω).

Integrating with respect to µ equation (1.12, page 35), written in each sub-
model Θm using the prior distribution π(m, ·), we see that

P

{
exp
[

sup
ν∈M1

+(M)

sup
ρ:M→M1

+(Θ)

1
2

[
(νρ)(U)−ν

{
K(
[
ρ, πexp(−βr)

]}]
−K(ν, µ)

]}
≤ P

{
exp
[

sup
ν∈M1

+(M)

1
2
ν

(
sup

ρ:M→M1
+(Θ)

ρ(U)−K(ρ, πexp(−βr))
)
−K(ν, µ)

]}
= P

{
µ

[
exp
{

1
2 sup
ρ:M→M1

+(Θ)

[
ρ(U)−K

[
ρ, πexp(−βr)

]]}]}
= µ

{
P

[
exp
{

1
2 sup
ρ:M→M1

+(Θ)

[
ρ(U)−K

[
ρ, πexp(−βr)

]]}]}
≤ 1.
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This proves that

P

{
exp

[
1
2

sup
ν∈M1

+(M)

sup
ρ:M→M1

+(Θ)

νρ
[
λΦ λ

N
(R)− βΦ− β

N
(R)
]

− (λ− β)νρ(r)− 2K(ν, µ)− ν
{
K
[
ρ, πexp(−βr)

]}]}
≤ 1. (1.13)

Introducing the optimal value of r on each sub-model r?(m) = ess infπ(m,·) r
and the empirical dimensions

de(m) = sup
ξ∈R+

ξ
[
πexp(−ξr)(m, r)− r?(m)

]
,

we can thus state

Theorem 1.3.10. For any positive real constants β < λ, with P probability
at least 1 − ε, for any posterior distribution ν : Ω → M1

+(M), for any
conditional posterior distribution ρ : Ω×M →M1

+(Θ),

νρ
[
λΦ λ

N
(R)− βΦ− β

N
(R)
]
≤ λΦ λ

N

[
νρ(R)

]
− βΦ− β

N

[
νρ(R)

]
≤ B1(ν, ρ),

where B1(ν, ρ) = (λ− β)νρ(r) + 2K(ν, µ) + ν
{
K
[
ρ, πexp(−βr)

]}
− 2 log(ε)

= ν

[∫ λ

β
πexp(−αr)(r)dα

]
+ 2K(ν, µ) + ν

{
K
[
ρ, πexp(−λr)

]}
− 2 log(ε)

= −2 log
{
µ

[
exp
(
−1

2

∫ λ

β
πexp(−αr)(r)dα

)]}
+ 2K

[
ν, µ“

π[exp(−λr)]
π[exp(−βr)]

”1/2

]
+ ν
{
K
[
ρ, πexp(−λr)

]}
− 2 log(ε),

and therefore B1(ν, ρ) ≤ ν
[
(λ− β)r? + log

(
λ
β

)
de

]
+ 2K(ν, µ)

+ ν
{
K
[
ρ, πexp(−λr)

]}
− 2 log(ε),

as well as B1(ν, ρ) ≤ −2 log
{
µ

[
exp
(
− (λ−β)

2 r? − 1
2 log

(
λ
β

)
de

)]}
+ 2K

[
ν, µ(

π[exp(−λr)]
π[exp(−βr)]

)1/2]+ ν
{
K
[
ρ, πexp(−λr)

]
− 2 log(ε).

Thus, for any real constants α and γ such that 0 ≤ γ < α < 1, with P
probability at least 1− ε, for any posterior distribution ν : Ω→M1

+(M) and
any conditional posterior distribution ρ : Ω×M →M1

+(Θ), the bound

B2(ν, ρ) = − log
[
(1−α)(1+γ)

]
α−γ νρ(r) +

2K(ν,µ)+ν
{

K
[
ρ,π

(1+γ)−Nr
]}
−2 log(ε)

N(α−γ)

=
1

N(α− γ)

{
2K

[
ν, µ“

π[(1−α)Nr ]

π[(1+γ)−Nr ]

”1/2

]
+ ν
{

K
[
ρ, π(1−α)Nr

]}}
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− 2
N(α− γ)

log

{
µ

[
exp
[
−1

2

∫ −N log(1−α)

N log(1+γ)
πexp(−ξr)(·, r)dξ

]]}

− 2 log(ε)
N(α− γ)

satisfies

νρ(R) ≤ α− γ
2αγ

(√
1 +

4αγ
(α− γ)2

{
1− exp

[
−(α− γ)B2(ν, ρ)

]}
− 1

)
≤ B2(ν, ρ).

If one is willing to bound the deviations with respect to Pνρ, it is enough
to remark that the equation preceding equation (1.13, page 40) can also be
written as

P

{
µ

[{
πexp(−βr)

[
exp
{
λΦ λ

N
◦R− βΦ− β

N
◦R− (λ− β)r

}]}1/2
]}
≤ 1.

Thus for any posterior distributions ν : Ω → M1
+(M) and ρ : Ω ×M →

M1
+(Θ),

P

{
ν

[{
ρ
[
exp
{
λΦ λ

N
◦R− βΦ− β

N
◦R

− (λ− β)r − 2 log
(
dν
dµ

)
− log

( dρ
dπexp(−βr)

)}]}1/2
]}
≤ 1.

Using the concavity of the square root function to pull the integration with
respect to ρ out of the square root, we get

Pνρ

{
exp
[

1
2

{
λΦ λ

N
◦R− βΦ− β

N
◦R

− (λ− β)r − 2 log
(
dν
dπ

)
− log

( dρ
dπexp(−βr)

)}]}
≤ 1.

This leads to

Theorem 1.3.11. For any positive real constants β < λ, for any posterior
distributions ν : Ω→M1

+(M) and ρ : Ω×M →M1
+(Θ), with Pνρ probability

at least 1− ε,

λΦ λ
N

[
R(m̂, θ̂ )

]
− βΦ− β

N

[
R(m̂, θ̂ )

]
≤ (λ− β)r(m̂, θ̂)

+ 2 log
[
dν
dµ(m̂ )

]
+ log

[ dρ
dπexp(−βr)

(m̂, θ̂ )
]
− 2 log(ε)

=
∫ λ

β
πexp(−αr)(r)dα
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+ 2 log
[
dν
dµ(m̂)

]
+ log

[ dρ
dπexp(−λr)

(m̂, θ̂ )
]
− 2 log(ε)

= 2 log
{
µ

[
exp
(
−1

2

∫ λ

β
πexp(−αr)(r)dα

)]}

+ 2 log
[

dν
dµ(

π[exp(−λr)]
π[exp(−βr)]

)1/2 (m̂)
]

+ log
[ dρ
dπexp(−λr)

(m̂, θ̂ )
]
− 2 log(ε).

Another way to state the same inequality is to say that for any real constants
α and γ such that 0 ≤ γ < α < 1, with Pνρ probability at least 1− ε,

R(m̂, θ̂)

≤ α− γ
2αγ

(√
1 +

4αγ
(α− γ)2

{
1− exp

[
−(α− γ)B(m̂, θ̂)

]}
− 1
)

≤ B(m̂, θ̂),

where

B(m̂, θ̂) = −
log
[
(1− α)(1 + γ)

]
α− γ

r(m̂, θ̂)

+
2 log

[
dν
dµ(m̂)

]
+ log

[
dρ

dπ
(1+γ)−Nr

(m̂, θ̂)
]
− 2 log(ε)

N(α− γ)

=
2

N(α− γ)
log
[

dν

dµ(
π[(1−α)Nr ]

π[(1+γ)−Nr ]

)1/2

(m̂)
]

+
log
[

dρ
dπ

(1−α)Nr
(m̂, θ̂)

]
− 2 log(ε)

N(α− γ)

+
2

N(α− γ)
log
{
µ

[
exp
(
−1

2

∫ λ

β
πexp(−αr)(r)dα

)]}
.

Let us remark that in the case when ν = µ“
π[(1−α)Nr ]

π[(1+γ)−Nr ]

”1/2 and ρ =

π(1−α)Nr , we get as desired a bound that is adaptively local in all the Θm

(at least when M is countable and µ is atomic):

B(ν, ρ) ≤ − 2
N(α−γ) log

{
µ

{
exp
[
N
2 log

[
(1 + γ)(1− α)

]
r?

− log
(
− log(1−α)
log(1+γ)

)
de
2

]}}
− 2 log(ε)
N(α− γ)

≤ inf
m∈M

{
− log

[
(1−α)(1+γ)

]
α−γ r?(m)
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+ log
(
− log(1−α)
log(1+γ)

)
de(m)
N(α−γ) − 2

log
[
εµ(m)

]
N(α−γ)

}
.

The penalization by the empirical dimension de(m) in each sub-model is as
desired linear in de(m). Non random partially local bounds could be obtained
in a way that is easy to imagine. We leave this investigation to the reader.

1.3.6. Two step localization. We have seen that the bound optimal
choice of the posterior distribution ν on the index set in Theorem 1.3.10
(page 40) is such that

dν

dµ
(m) ∼

(
π
[
exp
(
−λr(m, ·)

)]
π
[
exp
(
−βr(m, ·)

)]) 1
2

= exp
[
−1

2

∫ λ

β
πexp(−αr)(m, r)dα

]
.

This suggests replacing the prior distribution µ with µ defined by its density

dµ

dµ
(m) =

exp
[
−h(m)

]
µ
[
exp(−h)

] ,
where h(m) = −ξ

∫ γ

β
πexp(−αΦ− η

N
◦R)

[
Φ− η

N
◦R(m, ·)

]
dα. (1.14)

The use of Φ− η
N
◦R instead of R is motivated by technical reasons which will

appear in subsequent computations. Indeed, we will need to bound

ν

[∫ λ

β
πexp(−αΦ− η

N
◦R)

(
Φ− η

N
◦R
)
dα

]
in order to handle K(ν, µ). In the spirit of equation (1.9, page 33), starting
back from Theorem 1.1.4 (page 17), applied in each sub-model Θm to the
prior distribution πexp(−γΦ− η

N
◦R) and integrated with respect to µ, we see

that for any positive real constants λ, γ and η, with P probability at least
1 − ε, for any posterior distribution ν : Ω → M1

+(M) on the index set and
any conditional posterior distribution ρ : Ω×M →M1

+(Θ),

νρ
(
λΦ λ

N
◦R− γΦ− η

N
◦R
)
≤ λνρ(r)

+ νK(ρ, π) + K(ν, µ) + ν
{

log
[
π
[
exp
(
−γΦ− η

N
◦R
)]]}

− log(ε). (1.15)

Since x 7→ f(x) def= λΦ λ
N
− γΦ− η

N
(x) is a convex function, it is such that

f(x) ≥ xf ′(0) = xN
{[

1− exp(− λ
N )
]

+ γ
η

[
exp( ηN )− 1

]}
.

Thus if we put

γ =
η
[
1− exp(− λ

N )
]

exp( ηN )− 1
, (1.16)
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we obtain that f(x) ≥ 0, x ∈ R, and therefore that the left-hand side
of equation (1.15) is non-negative. We can moreover introduce the prior
conditional distribution π defined by

dπ

dπ
(m, θ) =

exp
[
−βΦ− η

N
◦R(θ)

]
π
{
m, exp

[
−βΦ− η

N
◦R
]} .

With P probability at least 1 − ε, for any posterior distributions ν : Ω →
M1

+(M) and ρ : Ω×M →M1
+(Θ),

βνρ(r) + ν
[
K(ρ, π)

]
= ν

{
K
[
ρ, πexp(−βr)

]}
− ν
[
log
{
π
[
exp(−βr)

]}]
≤ ν

{
K
[
ρ, πexp(−βr)

]}
+ βνπ(r) + ν

[
K(π, π)

]
≤ ν

{
K
[
ρ, πexp(−βr)

]}
+ βνπ

(
Φ− η

N
◦R
)

+ β
η

[
K(ν, µ)− log(ε)

]
+ ν
[
K(π, π)

]
= ν

{
K
[
ρ, πexp(−βr)

]}
− ν
{

log
[
π
[
exp
(
−βΦ− η

N
◦R
)]]}

+ β
η

[
K(ν, µ)− log(ε)

]
.

Thus, coming back to equation (1.15), we see that under condition (1.16),
with P probability at least 1− ε,

0 ≤ (λ− β)νρ(r) + ν
{
K
[
ρ, πexp(−βr)

]}
− ν
[∫ γ

β
πexp(−αΦ− η

N
◦R)

(
Φ− η

N
◦R
)
dα

]
+ (1 + β

η )
[
K(ν, µ) + log(2

ε )
]
.

Noticing moreover that

(λ− β)νρ(r) + ν
{
K
[
ρ, πexp(−βr)

]}
= ν

{
K
[
ρ, πexp(−λr)

]}
+ ν

[∫ λ

β
πexp(−αr)(r)dα

]
,

and choosing ρ = πexp(−λr), we have proved

Theorem 1.3.12. For any positive real constants β, γ and η, such that
γ < η

[
exp( ηN ) − 1

]−1, defining λ by condition (1.16), so that

λ = −N log
{

1 − γ
η

[
exp( ηN ) − 1

]}
, with P probability at least 1 − ε, for

any posterior distribution ν : Ω → M1
+(M), any conditional posterior dis-

tribution ρ : Ω×M →M1
+(Θ),

ν

[∫ γ

β
πexp(−αΦ− η

N
◦R)

(
Φ− η

N
◦R
)
dα

]
≤ ν

[∫ λ

β
πexp(−αr)(r)dα

]
+
(
1 + β

η

)[
K(ν, µ) + log

(
2
ε

)]
.
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Let us remark that this theorem does not require that β < γ, and thus
provides both an upper and a lower bound for the quantity of interest:

Corollary 1.3.13. For any positive real constants β, γ and η such that
max{β, γ} < η

[
exp( ηN ) − 1

]−1, with P probability at least 1 − ε, for any
posterior distributions ν : Ω→M1

+(M) and ρ : Ω×M →M1
+(Θ),

ν

[∫ γ

−N log{1− β
N

[exp( η
N

)−1]}
πexp(−αr)(r)dα

]
−
(
1 + γ

η

)[
K(ν, µ) + log

(
3
ε

)]
≤ ν

[∫ γ

β
πexp(−αΦ− η

N
◦R)

(
Φ− η

N
◦R
)
dα

]
≤ ν

[∫ −N log{1− γ
η

[exp( η
N

)−1]}

β
πexp(−αr)(r)dα

]
+
(
1 + β

η

)[
K(ν, µ) + log

(
3
ε

)]
.

We can then remember that

K(ν, µ) = ξ
(
ν − µ

)[∫ γ

β
πexp(−αΦ− η

N
◦R)

(
Φ− η

N
◦R
)
dα

]
+ K(ν, µ)−K(µ, µ),

to conclude that, putting

Gη(α) = −N log
{

1− α
η

[
exp
( η
N )− 1

]}
≥ α, α ∈ R+, (1.17)

and

dν̂

dµ
(m) def=

exp
[
−h(m)

]
µ
[
exp(−h)

] where h(m) = ξ

∫ γ

Gη(β)
πexp(−αr)(m, r)dα, (1.18)

the divergence of ν with respect to the local prior µ is bounded by[
1− ξ

(
1 + β

η

)]
K(ν, µ)

≤ ξν
[∫ Gη(γ)

β
πexp(−αr)(r)dα

]
− ξµ

[∫ γ

Gη(β)
πexp(−αr)(r)dα

]
+ K(ν, µ)−K(µ, µ) + ξ

(
2 + β+γ

η

)
log
(

3
ε

)
≤ ξν

[∫ Gη(γ)

β
πexp(−αr)(r)dα

]
+ K(ν, µ)

+ log
{
µ

[
exp
(
−ξ
∫ γ

Gη(β)
πexp(−αr)(r)dα

)]}
+ ξ
(
2 + β+γ

η

)
log
(

3
ε

)
= K(ν, ν̂) + ξν

[(∫ Gη(β)

β
+
∫ Gη(γ)

γ

)
πexp(−αr)(r)dα

]
+ ξ
(
2 + β+γ

η

)
log
(

3
ε

)
.

We have proved
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Theorem 1.3.14. For any positive constants β, γ and η such that
max{β, γ} < η

[
exp( ηN ) − 1

]−1, with P probability at least 1 − ε, for any
posterior distribution ν : Ω→M1

+(M) and any conditional posterior distri-
bution ρ : Ω×M →M1

+(Θ),

K(ν, µ) ≤
[
1− ξ

(
1 +

β

η

)]−1
{

K(ν, ν̂)

+ ξν

[(∫ Gη(β)

β
+
∫ Gη(γ)

γ

)
πexp(−αr)(r)dα

]
+ ξ
(
2 + β+γ

η

)
log
(

3
ε

)}
≤
[
1− ξ

(
1 +

β

η

)]−1
{

K(ν, ν̂)

+ ξν

[[
Gη(γ)− γ +Gη(β)− β

]
r? + log

(
Gη(β)Gη(γ)

βγ

)
de

]
+ ξ
(
2 + β+γ

η

)
log
(

3
ε

)}
,

where the local prior µ is defined by equation (1.14, page 43) and the local
posterior ν̂ and the function Gη are defined by equation (1.18, page 45).

We can then use this theorem to give a local version of Theorem 1.3.10 (page
40). To get something pleasing to read, we can apply Theorem 1.3.14 with
constants β′, γ′ and η chosen so that 2ξ

1−ξ(1+β′
η

)
= 1, Gη(β′) = β and γ′ = λ,

where β and λ are the constants appearing in Theorem 1.3.10. This gives

Theorem 1.3.15. For any positive real constants β < λ and η such that
λ < η

[
exp( ηN ) − 1

]−1, with P probability at least 1 − ε, for any posterior
distribution ν : Ω → M1

+(M), for any conditional posterior distribution
ρ : Ω×M →M1

+(Θ),

νρ
[
λΦ λ

N
(R)− βΦ− β

N
(R)
]
≤ λΦ λ

N

[
νρ(R)

]
− βΦ− β

N

[
νρ(R)

]
≤ B3(ν, ρ),

where B3(ν, ρ) = ν

[∫ Gη(λ)

G−1
η (β)

πexp(−αr)(r)dα
]

+
(

3 + G−1
η (β)
η

)
K
[
ν, µ

exp
[
−
(

3+
G−1
η (β)

η

)−1 R λ
β πexp(−αr)(r)dα

]]
+ ν
{
K(ρ, πexp(−λr)

]}
+
(

4 + G−1
η (β)+λ
η

)
log
(

4
ε

)
≤ ν

[[
Gη(λ)−G−1

η (β)
]
r? + log

(
Gη(λ)

G−1
η (β)

)
de

]
+
(

3 + G−1
η (β)
η

)
K
[
ν, µ

exp
[
−
(

3+
G−1
η (β)

η

)−1 R λ
β πexp(−αr)(r)dα

]]
+ ν
{
K(ρ, πexp(−λr)

]}
+
(

4 + G−1
η (β)+λ
η

)
log
(

4
ε

)
,
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and where the function Gη is defined by equation (1.17, page 45).

A first remark: if we had the stamina to use Cauchy Schwarz inequalities (or
more generally Hölder inequalities) on exponential moments instead of using
weighted union bounds on deviation inequalities, we could have replaced
log(4

ε ) with − log(ε) in the above inequalities.
We see that we have achieved the desired kind of localization of Theorem

1.3.10 (page 40), since the new empirical entropy term
K[ν, µ

exp[−ξ
R λ
β πexp(−αr)(r)dα]

]

cancels for a value of the posterior distribution on the index set ν which is of
the same form as the one minimizing the bound B1(ν, ρ) of Theorem 1.3.10
(with a decreased constant, as could be expected). In a typical parametric
setting, we will have∫ λ

β
πexp(−αr)(r)dα ' (λ− β)r?(m) + log

(
λ
β

)
de(m),

and therefore, if we choose for ν the Dirac mass at

m̂ ∈ arg minm∈M r?(m) +
log(λ

β
)

λ−β de(m),
and ρ(m, ·) = πexp(−λr)(m, ·), we will get, in the case when the index set M
is countable,

B3(ν, ρ) . max

{[
Gη(λ)−G−1

η (β)
]
, (λ− β)

log
[
Gη(λ)

G−1
η (β)

]
log(λ

β
)

}

×
[
r?(m̂) +

log(λ
β

)

λ−β de(m̂)
]

+
(

3 + G−1
η (β)
η

)
log

{∑
m∈M

µ(m)
µ(m̂)

exp
[
−
(

3 + G−1
η (β)
η

)−1

×
{

(λ− β)
[
r?(m)− r?(m̂)

]
+ log

(
λ
β

)[
de(m)− de(m̂)

]}]}
+
(

4 + G−1
η (β)+λ
η

)
log
(

4
ε

)
.

This shows that the impact on the bound of the addition of supplemen-
tary models depends on their penalized minimum empirical risk r?(m) +
log(λ

β
)

λ−β de(m). More precisely the adaptive and local complexity factor

log

{∑
m∈M

µ(m)
µ(m̂)

exp
[
−
(

3 + G−1
η (β)
η

)−1

×
{

(λ− β)
[
r?(m)− r?(m̂)

]
+ log

(
λ
β

)[
de(m)− de(m̂)

]}]}
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replaces in this bound the non local factor

K(ν, µ) = − log
[
µ(m̂)

]
= log

[ ∑
m∈M

µ(m)
µ(m̂)

]

which appears when applying Theorem 1.3.10 (page 40) to the Dirac mass
ν = δbm. Thus in the local bound, the influence of models decreases expo-
nentially fast when their penalized empirical risk increases.

One can deduce a result about the deviations with respect to the posterior
νρ from Theorem 1.3.15 (page 46) without much supplementary work: it is
enough for that purpose to remark that with P probability at least 1 − ε,
for any posterior distribution ν : Ω→M1

+(M),

ν

[
log
{
πexp(−λr)

[
exp
{
λΦ λ

N
(R)− βΦ− β

N
(R)
}]}]

− ν

(∫ Gη(λ)

G−1
η (β)

πexp(−αr)(r)dα

)
−
(

3 + G−1
η (β)
η

)
K
[
ν, µ

exp

[
−
(

3+
G−1
η (β)

η

)−1 R λ
β πexp(−αr)(r)dα

]]
−
(

4 + G−1
η (β)+λ
η

)
log
(

4
ε

)
≤ 0,

this inequality being obtained by taking a supremum in ρ in Theorem 1.3.15
(page 46). One can then take a supremum in ν, to get, still with P probability
at least 1− ε,

log

{
µ

exp

[
−
(

3+
G−1
η (β)

η

)−1 R λ
β πexp(−αr)(r)dα

][
{
πexp(−λr)

[
exp
{
λΦ λ

N
(R)− βΦ− β

N
(R)
}]}(3+

G−1
η (β)

η

)−1

× exp

(
−
(

3 + G−1
η (β)
η

)−1
∫ Gη(λ)

G−1
η (β)

πexp(−αr)(r)dα

)]}

≤
4 + G−1

η (β)+λ
η

3 + G−1
η (β)
η

log
(

4
ε

)
.

Using the fact that x 7→ xα is concave when α =
(
3 + G−1

η (β)
η

)−1
< 1, we get

for any posterior conditional distribution ρ : Ω×M →M1
+(Θ),

µ
exp

[
−
(

3+
G−1
η (β)

η

)−1 R λ
β πexp(−αr)(r)dα

]ρ{
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exp

[(
3 + G−1

η (β)
η

)−1
(
λΦ λ

N
(R)− βΦ− β

N
(R)−

∫ Gη(λ)

G−1
η (β)

πexp(−αr)(r)dα

+ log
[

dρ

dπexp(−λr)
(m̂, θ̂ )

])]}

≤ exp

(
4 + G−1

η (β)+λ
η

3 + G−1
η (β)
η

log
(

4
ε

))
.

We can thus state

Theorem 1.3.16. For any ε ∈)0, 1(, with P probability at least 1−ε, for any
posterior distribution ν : Ω→M1

+(M) and conditional posterior distribution
ρ : Ω×M →M1

+(Θ), for any ξ ∈)0, 1(, with νρ probability at least 1− ξ,

λΦ λ
N

(R)− βΦ− β
N

(R) ≤
∫ Gη(λ)

G−1
η (β)

πexp(−αr)(r)dα

+
(

3 + G−1
η (β)
η

)
log

 dν

dµ
exp

[
−
(

3+
G−1
η (β)

η

)−1 R λ
β πexp(−αr)(r)dα

] (m̂)


+ log

[
dρ

dπexp(−λr)
(m̂, θ̂ )

]
+
(

4 + G−1
η (β)+λ
η

)
log
(

4
ε

)
−
(

3 + G−1
η (β)
η

)
log(ξ).

Note that the given bound consequently holds with Pνρ probability at least
(1− ε)(1− ξ) ≥ 1− ε− ξ.

1.4. Relative bounds

The behaviour of the minimum of the empirical process θ 7→ r(θ) is known
to depend on the covariances between pairs

[
r(θ), r(θ′)

]
, θ, θ′ ∈ Θ. In this

respect, our previous study, based on the analysis of the variance of r(θ)
(or technically on some exponential moment playing quite the same role),
loses some accuracy in some circumstances (namely when infΘR is not close
enough to zero).

In this section, instead of bounding the expected risk ρ(R) of any posterior
distribution, we are going to upper bound the difference ρ(R)− infΘR, and
more generally ρ(R)−R(θ̃), where θ̃ ∈ Θ is some fixed parameter value.

In the next section we will analyse ρ(R) − πexp(−βR)(R), allowing us to
compare the expected error rate of a posterior distribution ρ with the error
rate of a Gibbs prior distribution. We will also analyse ρ1(R)−ρ2(R), where
ρ1 and ρ2 are two arbitrary posterior distributions, using comparison with
a Gibbs prior distribution as a tool, and in particular as a tool to establish
the required Kullback divergence bounds.
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Relative bounds do not provide the same kind of results as direct bounds
on the error rate: it is not possible to estimate ρ(R) with an order of precision
higher than (ρ(R)/N)1/2, so that relative bounds cannot of course achieve
that, but they provide a way to reach a faster rate for ρ(R) − infΘR, that
is for the relative performance of the estimator within a restricted model.

The study of PAC-Bayesian relative bounds was initiated in the second
and third parts of J.-Y. Audibert’s dissertation (Audibert, 2004b).

In this section and the next, we will suggest a series of possible uses
of relative bounds. As usual, we will start with the simplest inequalities
and proceed towards more sophisticated techniques with better theoretical
properties, but at the same time less precise constants, so that which one is
the more fitted will depend on the size of the training sample.

The first thing we will do is to compute for any posterior distribution
ρ : Ω→M1

+(Θ) a relative performance bound bearing on ρ(R)− infΘR. We
will also compare the classification model indexed by Θ with a sub-model
indexed by one of its measurable subsets Θ1 ⊂ Θ. For this purpose we will
form the difference ρ(R)−R(θ̃), where θ̃ ∈ Θ1 is some possibly unobservable
value of the parameter in the sub-model defined by Θ1, typically chosen in
arg minΘ1 R. If this is so and ρ(R) − R(θ̃) = ρ(R) − infΘ1 R, a negative
upper bound indicates that it is definitely worth using a randomized esti-
mator ρ supported by the larger parameter set Θ instead of using only the
classification model defined by the smaller set Θ1.

1.4.1. Basic inequalities. Relative bounds in this section are based on
the control of r(θ) − r(θ̃), where θ, θ̃ ∈ Θ. These differences are related to
the random variables

ψi(θ, θ̃) = σi(θ)− σi(θ̃) = 1
[
fθ(Xi) 6= Yi

]
− 1

[
feθ(Xi) 6= Yi

]
.

Some supplementary technical difficulties, as compared to the previous
sections, come from the fact that ψi(θ, θ̃) takes three values, whereas σi(θ)
takes only two. Let

r′(θ, θ̃) = r(θ)− r(θ̃) =
1
N

N∑
i=1

ψi(θ, θ̃), θ, θ̃ ∈ Θ, (1.19)

and R′(θ, θ̃) = R(θ) − R(θ̃) = P
[
r′(θ, θ̃)

]
. We have as usual from indepen-

dence that

log
{
P
[
exp
[
−λr′(θ, θ̃)

]]}
=

N∑
i=1

log
{
P
[
exp
[
− λ
Nψi(θ, θ̃)

]]}
≤ N log

{
1
N

N∑
i=1

P
{

exp
[
− λ
N
ψi(θ, θ̃)

]}}
.
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Let Ci be the distribution of ψi(θ, θ̃) under P and let C̄ = 1
N

∑N
i=1Ci ∈

M1
+

(
{−1, 0, 1}

)
. With this notation

log
{
P
[
exp
[
−λr′(θ, θ̃)

]]}
≤ N log

{∫
ψ∈{−1,0,1}

exp
(
− λ
N
ψ
)
C̄(dψ)

}
.

(1.20)
The right-hand side of this inequality is a function of C̄. On the other

hand, C̄ being a probability measure on a three point set, is defined by two
parameters, that we may take equal to

∫
ψC̄(dψ) and

∫
ψ2C̄(dψ). To this

purpose, let us introduce

M ′(θ, θ̃) =
∫
ψ2C̄(dψ) = C̄(+1) + C̄(−1) =

1
N

N∑
i=1

P
[
ψ2
i (θ, θ̃)

]
, θ, θ̃ ∈ Θ.

It is a pseudo distance (meaning that it is symmetric and satisfies the triangle
inequality), since it can also be written as

M ′(θ, θ̃) =
1
N

N∑
i=1

P
{∣∣∣1[fθ(Xi) 6= Yi

]
− 1

[
feθ(Xi) 6= Yi

]∣∣∣}, θ, θ̃ ∈ Θ.

It is readily seen that

N log
{∫

exp
(
− λ
N
ψ

)
C̄(dψ)

}
= −λΨ λ

N

[
R′(θ, θ̃),M ′(θ, θ̃)

]
,

where

Ψa(p,m) = −a−1 log
[
(1−m) +

m+ p

2
exp(−a) +

m− p
2

exp(a)
]

= −a−1 log
{

1− sinh(a)
[
p−m tanh(a2 )

]}
. (1.21)

Thus plugging this equality into inequality (1.20, page 51) we get

Theorem 1.4.1. For any real parameter λ,

log
{
P
[
exp
[
−λr′(θ, θ̃)

]]}
≤ −λΨ λ

N

[
R′(θ, θ̃),M ′(θ, θ̃)

]
, θ, θ̃ ∈ Θ,

where r′ is defined by equation (1.19, page 50) and Ψ and M ′ are defined
just above.

To make a link with previous work of Mammen and Tsybakov — see e.g.
Mammen et al. (1999) and Tsybakov (2004) — we may consider the pseudo-
distance D on Θ defined by equation (1.3, page 20). This distance only
depends on the distribution of the patterns. It is often used to formulate
margin assumptions, in the sense of Mammen and Tsybakov. Here we are
going to work rather with M ′: as it is dominated by D in the sense that
M ′(θ, θ̃) ≤ D(θ, θ̃), θ, θ̃ ∈ Θ, with equality in the important case of binary
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classification, hypotheses formulated on D induce hypotheses on M ′, and
working with M ′ may only sharpen the results when compared to working
with D.

Using the same reasoning as in the previous section, we deduce

Theorem 1.4.2. For any real parameter λ, any θ̃ ∈ Θ, any prior distribu-
tion π ∈M1

+(Θ),

P

{
exp
[

sup
ρ∈M1

+(Θ)

λ
[
ρ
{

Ψ λ
N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]}
− ρ
[
r′(·, θ̃)

]]
−K(ρ, π)

]}
≤ 1.

We are now going to derive some other type of relative exponential in-
equality. In Theorem 1.4.2 we obtained an inequality comparing one observed
quantity ρ

[
r′(·, θ̃ )

]
with two unobserved ones, ρ

[
R′(·, θ̃ )

]
and ρ

[
M ′(·, θ̃ )

]
,

— indeed, because of the convexity of the function λΨ λ
N

,

λρ
{

Ψ λ
N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]}
≥ λΨ λ

N

{
ρ
[
R′(·, θ̃ )

]
, ρ
[
M ′(·, θ̃ )

]}
.

This may be inconvenient when looking for an empirical bound for ρ
[
R′(·, θ̃)

]
,

and we are going now to seek an inequality comparing ρ
[
R′(·, θ̃ )

]
with em-

pirical quantities only.
This is possible by considering the log-Laplace transform of some modified

random variable χi(θ, θ̃). We may consider more precisely the change of
variable defined by the equation

exp
(
− λ
N
χi

)
= 1− λ

N
ψi,

which is possible when λ
N ∈ )−1, 1( and leads to define

χi = −N
λ

log
(

1− λ

N
ψi

)
.

We may then work on the log-Laplace transform

log

{
P

[
exp
{
− λ
N

N∑
i=1

χi(θ, θ̃)
}]}

= log

{
P

[
N∏
i=1

(
1− λ

N
ψi(θ, θ̃)

)]}

= log

{
P

[
exp
{ N∑
i=1

log
[
1− λ

N
ψi(θ, θ̃)

]}]}
.

We may now follow the same route as previously, writing

log

{
P

[
exp
{ N∑
i=1

log
[
1− λ

N
ψi(θ, θ̃)

]}]}
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=
N∑
i=1

log
[
1− λ

N
P
[
ψi(θ, θ̃)

]]
≤ N log

[
1− λ

N
R′(θ, θ̃ )

]
.

Let us also introduce the random pseudo distance

m′(θ, θ̃) =
1
N

N∑
i=1

ψi(θ, θ̃)2

=
1
N

N∑
i=1

∣∣∣1[fθ(Xi) 6= Yi
]
− 1

[
feθ(Xi) 6= Yi

]∣∣∣, θ, θ̃ ∈ Θ. (1.22)

This is the empirical counterpart of M ′, implying that P(m′) = M ′. Let us
notice that

1
N

N∑
i=1

log
[
1− λ

Nψi(θ, θ̃)
]

=
log(1− λ

N )− log(1 + λ
N )

2
r′(θ, θ̃)

+
log(1− λ

N ) + log(1 + λ
N )

2
m′(θ, θ̃)

=
1
2

log

(
1− λ

N

1 + λ
N

)
r′
(
θ, θ̃

)
+

1
2

log
(
1− λ2

N2

)
m′
(
θ, θ̃

)
.

Let us put γ = N
2 log

(
1+ λ

N

1− λ
N

)
, so that

λ = N tanh
( γ
N

)
and N

2 log
(

1− λ2

N2

)
= −N log

[
cosh( γN )

]
.

With this notation, we can conveniently write the previous inequality as

P
{

exp
[
−N log

[
1− tanh

( γ
N

)
R′(θ, θ̃)

]
− γr′

(
θ, θ̃

)
−N log

[
cosh( γN )

]
m′
(
θ, θ̃

)]}
≤ 1.

Integrating with respect to a prior probability measure π ∈ M1
+(Θ), we

obtain

Theorem 1.4.3. For any real parameter γ, for any θ̃ ∈ Θ, for any prior
probability distribution π ∈M1

+(Θ),

P

{
exp

[
sup

ρ∈M1
+(Θ)

{
−Nρ

{
log
[
1− tanh

( γ
N

)
R′(·, θ̃ )

]}
− γρ

[
r′(·, θ̃ )

]
−N log

[
cosh( γN )

]
ρ
[
m′(·, θ̃ )

]
−K(ρ, π)

}]}
≤ 1.
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1.4.2. Non random bounds. Let us first deduce a non-random bound
from Theorem 1.4.2 (page 52). This theorem can be conveniently taken
advantage of by throwing the non-linearity into a localized prior, considering
the prior probability measure µ defined by its density

dµ

dπ
(θ) =

exp
{
−λΨ λ

N

[
R′(θ, θ̃ ),M ′(θ, θ̃ )

]
+ βR′(θ, θ̃ )

}
π
{

exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

}} .
Indeed, for any posterior distribution ρ : Ω→M1

+(Θ),

K(ρ, µ) = K(ρ, π) + λρ
{

Ψ λ
N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]}
− βρ

[
R′(·, θ̃ )

]
+ log

{
π
[
exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

]}]}
.

Plugging this into Theorem 1.4.2 (page 52) and using the convexity of the
exponential function, we see that for any posterior probability distribution
ρ : Ω→M1

+(Θ),

βP
{
ρ
[
R′(·, θ̃ )

]}
≤ λP

{
ρ
[
r′(·, θ̃ )

]}
+ P

[
K(ρ, π)

]
+ log

{
π
[
exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

]}]}
.

We can then recall that

λρ
[
r′(·, θ̃ )

]
+ K(ρ, π) = K

[
ρ, πexp(−λr)

]
− log

{
π
[
exp
[
−λr′(·, θ̃ )

]]}
,

and notice moreover that

−P
{

log
{
π
[
exp
[
−λr′(·, θ̃ )

]]}}
≤ − log

{
π
[
exp
[
−λR′(·, θ̃ )

]]}
,

since R′ = P(r′) and h 7→ log
{
π
[
exp(h)

]}
is a convex functional. Putting

these two remarks together, we obtain

Theorem 1.4.4. For any real positive parameter λ, for any prior distri-
bution π ∈M1

+(Θ), for any posterior distribution ρ : Ω→M1
+(Θ),

P
{
ρ
[
R′(·, θ̃ )

]}
≤ 1
β
P
[
K(ρ, πexp(−λr))

]
+

1
β

log
{
π
[
exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

]}]}
− 1
β

log
{
π
[
exp
[
−λR′(·, θ̃ )

]]}
≤ 1
β
P
[
K(ρ, πexp(−λr))

]
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+
1
β

log
{
π
[
exp
{
−
[
N sinh( λN )− β

]
R′(·, θ̃ )

+ 2N sinh( λ
2N )2M ′(·, θ̃ )

}]}
− 1
β

log
{
π
[
exp
[
−λR′(·, θ̃ )

]]}
.

It may be interesting to derive some more suggestive (but slightly weaker)
bound in the important case when Θ1 = Θ and R(θ̃) = infΘR. In this case,
it is convenient to introduce the expected margin function

ϕ(x) = sup
θ∈Θ

M ′(θ, θ̃)− xR′(θ, θ̃), x ∈ R+. (1.23)

We see that ϕ is convex and non-negative onR+. Using the boundM ′(θ, θ̃ ) ≤
xR′(θ, θ̃ ) + ϕ(x), we obtain

P
{
ρ
[
R′(·, θ̃ )

]}
≤ 1
β
P
[
K(ρ, πexp(−λr))

]
+

1
β

log
{
π

[
exp
{
−
{
N sinh( λN )

[
1− x tanh( λ

2N )
]
− β

}
R′(·, θ̃ )

}]}
+
N sinh( λN ) tanh( λ

2N )
β

ϕ(x)− 1
β

log
{
π
[
exp
[
−λR′(·, θ̃ )

]]}
.

Let us make the change of variable γ = N sinh( λN )
[
1 − x tanh( λ

2N )
]
− β to

obtain

Corollary 1.4.5. For any real positive parameters x, γ and λ such that
x ≤ tanh( λ

2N )−1 and 0 ≤ γ < N sinh( λN )
[
1− x tanh( λ

2N )
]
,

P
[
ρ(R)

]
− inf

Θ
R ≤

{
N sinh( λN )

[
1− x tanh( λ

2N )
]
− γ
}−1

×
{∫ λ

γ

[
πexp(−αR)(R)− inf

Θ
R
]
dα

+N sinh
(
λ
N

)
tanh

(
λ

2N

)
ϕ(x) + P

[
K(ρ, πexp(−λr))

]}
.

Let us remark that these results, although well suited to study Mammen
and Tsybakov’s margin assumptions, hold in the general case: introducing
the convex expected margin function ϕ is a substitute for making hypotheses
about the relations between R and D.

Using the fact that R′(θ, θ̃ ) ≥ 0, θ ∈ Θ and that ϕ(x) ≥ 0, x ∈ R+, we
can weaken and simplify the preceding corollary even more to get

Corollary 1.4.6. For any real parameters β, λ and x such that x ≥ 0
and 0 ≤ β < λ− x λ2

2N , for any posterior distribution ρ : Ω→M1
+(Θ),
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P
[
ρ(R)

]
≤ inf

Θ
R

+
[
λ− x λ2

2N − β
]−1
{∫ λ

β

[
πexp(−αR)(R)− inf

Θ
R
]
dα

+ P
{
K
[
ρ, πexp(−λr)

]}
+ ϕ(x)

λ2

2N

}
.

Let us apply this bound under the margin assumption first considered by
Mammen and Tsybakov (Mammen et al., 1999; Tsybakov, 2004), which says
that for some real positive constant c and some real exponent κ ≥ 1,

R′(θ, θ̃) ≥ cD(θ, θ̃)κ, θ ∈ Θ. (1.24)

In the case when κ = 1, then ϕ(c−1) = 0, proving that

P
{
πexp(−λr)

[
R′(·, θ̃ )

]}
≤

∫ λ
β πexp(−γR)

[
R′(·, θ̃ )

]
dγ

N sinh( λN )
[
1− c−1 tanh( λ

2N )
]
− β

≤
∫ λ
β πexp(−γR)

[
R′(·, θ̃ )

]
dγ

λ− λ2

2cN − β
.

Taking for example λ = cN
2 , β = λ

2 = cN
4 , we obtain

P
[
πexp(−2−1cNr)(R)

]
≤ inf R+

8
cN

∫ cN
2

cN
4

πexp(−γR)

[
R′(·, θ̃)

]
dγ

≤ inf R+ 2πexp(− cN
4
R)

[
R′(·, θ̃ )

]
.

If moreover the behaviour of the prior distribution π is parametric, meaning
that πexp(−βR)

[
R′(·, θ̃ )

]
≤ d

β , for some positive real constant d linked with
the dimension of the classification model, then

P
[
πexp(− cN

2
r)(R)

]
≤ inf R+

8 log(2)d
cN

≤ inf R+
5.55 d
cN

.

In the case when κ > 1,

ϕ(x) ≤ (κ− 1)κ−
κ
κ−1 (cx)−

1
κ−1 = (1− κ−1)(κcx)−

1
κ−1 ,

thus P
{
πexp(−λr)

[
R′(·, θ̃ )

]}
≤
∫ λ
β πexp(−γR)

[
R′(·, θ̃ )

]
dγ + (1− κ−1)(κcx)−

1
κ−1 λ2

2N

λ− xλ2

2N − β
.

Taking for instance β = λ
2 , x = N

2λ , and putting b = (1− κ−1)(cκ)−
1

κ−1 , we
obtain

P
[
πexp(−λr)(R)

]
− inf R ≤ 4

λ

∫ λ

λ/2
πexp(−γR)

[
R′(·, θ̃ )

]
dγ + b

(
2λ
N

) κ
κ−1

.
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In the parametric case when πexp(−γR)

[
R′(·, θ̃ )

]
≤ d

γ , we get

P
[
πexp(−λr)(R)

]
− inf R ≤ 4 log(2)d

λ
+ b

(
2λ
N

) κ
κ−1

.

Taking
λ = 2−1

[
8 log(2)d

] κ−1
2κ−1 (κc)

1
2κ−1N

κ
2κ−1 ,

we obtain

P
[
πexp(−λr)(R)

]
− inf R ≤ (2− κ−1)(κc)−

1
2κ−1

(
8 log(2)d

N

) κ
2κ−1

.

We see that this formula coincides with the result for κ = 1. We can thus
reduce the two cases to a single one and state

Corollary 1.4.7. Let us assume that for some θ̃ ∈ Θ, some positive
real constant c, some real exponent κ ≥ 1 and for any θ ∈ Θ, R(θ) ≥
R(θ̃) + cD(θ, θ̃)κ. Let us also assume that for some positive real constant d
and any positive real parameter γ, πexp(−γR)(R)− inf R ≤ d

γ . Then

P
[
π

exp
{
−2−1[8 log(2)d]

κ−1
2κ−1 (κc)

1
2κ−1N

κ
2κ−1 r

}(R)
]

≤ inf R+ (2− κ−1)(κc)−
1

2κ−1

(
8 log(2)d

N

) κ
2κ−1

.

Let us remark that the exponent of N in this corollary is known to be the
minimax exponent under these assumptions: it is unimprovable, whatever
estimator is used in place of the Gibbs posterior shown here (at least in the
worst case compatible with the hypotheses). The interest of the corollary
is to show not only the minimax exponent in N , but also an explicit non-
asymptotic bound with reasonable and simple constants. It is also clear that
we could have got slightly better constants if we had kept the full strength
of Theorem 1.4.4 (page 54) instead of using the weaker Corollary 1.4.6 (page
55).

We will prove in the following empirical bounds showing how the constant
λ can be estimated from the data instead of being chosen according to some
margin and complexity assumptions.

1.4.3. Unbiased empirical bounds. We are going to define an empirical
counterpart for the expected margin function ϕ. It will appear in empirical
bounds having otherwise the same structure as the non-random bound we
just proved. Anyhow, we will not launch into trying to compare the be-
haviour of our proposed empirical margin function with the expected margin
function, since the margin function involves taking a supremum which is not
straightforward to handle. When we will touch the issue of building prov-
ably adaptive estimators, we will instead formulate another type of bounds
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based on integrated quantities, rather than try to analyse the properties of
the empirical margin function.

Let us start as in the previous subsection with the inequality

βP
{
ρ
[
R′(·, θ̃ )

]}
≤ P

{
λρ
[
r′(·, θ̃ )

]
+ K(ρ, π)

}
+ log

{
π
[
exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

}]}
.

We have already defined by equation (1.22, page 53) the empirical pseudo-
distance

m′(θ, θ̃ ) =
1
N

N∑
i=1

ψi(θ, θ̃ )2.

Recalling that P
[
m′(θ, θ̃ )

]
= M ′(θ, θ̃ ), and using the convexity of h 7→

log
{
π
[
exp(h)

]}
, leads to the following inequalities:

log
{
π
[
exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

}]}
≤ log

{
π
[
exp
{
−N sinh( λN )R′(·, θ̃ )

+N sinh( λN ) tanh( λ
2N )M ′(·, θ̃ ) + βR′(·, θ̃ )

]}]}
≤ P

{
log
{
π
[
exp
{
−
[
N sinh( λN )− β

]
r′(·, θ̃ )

+N sinh( λN ) tanh( λ
2N )m′(·, θ̃ )

}]}}
.

We may moreover remark that

λρ
[
r′(·, θ̃ )

]
+ K(ρ, π) =

[
β −N sinh( λN ) + λ

]
ρ
[
r′(·, θ̃ )

]
+ K

[
ρ, πexp{−[N sinh( λ

N
)−β]r}

]
− log

{
π
[
exp
{
−
[
N sinh( λN )− β

]
r′(·, θ̃ )

}]}
.

This establishes

Theorem 1.4.8. For any positive real parameters β and λ, for any poste-
rior distribution ρ : Ω→M1

+(Θ),

P
{
ρ
[
R′(·, θ̃ )

]}
≤ P

{[
1−

N sinh( λN )− λ
β

]
ρ
[
r′(·, θ̃ )

]
+

K
[
ρ, πexp{−[N sinh( λ

N
)−β]r}

]
β

+ β−1 log
{
πexp{−[N sinh( λ

N
)−β]r}

[
exp
[
N sinh( λN ) tanh( λ

2N )m′(·, θ̃ )
]]}}

.



1.4. Relative bounds 59

Taking β = N
2 sinh( λN ), using the fact that sinh(a) ≥ a, a ≥ 0 and expressing

tanh(a2 ) = a−1
[√

1 + sinh(a)2 − 1
]

and a = log
[√

1 + sinh(a)2 + sinh(a)
]
,

we deduce

Corollary 1.4.9. For any positive real constant β and any posterior dis-
tribution ρ : Ω→M1

+(Θ),

P
{
ρ
[
R′(·, θ̃ )

]}
≤ P

{[
N
β log

(√
1 + 4β2

N2 + 2β
N

)
− 1
]

︸ ︷︷ ︸
≤1

ρ
[
r′(·, θ̃ )

]

+
1
β

{
K
[
ρ, πexp(−βr)

]
+ log

[
πexp(−βr)

{
exp
[
N
(√

1 + 4β2

N2 − 1
)
m′(·, θ̃ )

]}]}}
.

This theorem and its corollary are really analogous to Theorem 1.4.4 (page
54), and it could easily be proved that under Mammen and Tsybakov margin
assumptions we obtain an upper bound of the same order as Corollary 1.4.7
(page 57). Anyhow, in order to obtain an empirical bound, we are now going
to take a supremum over all possible values of θ̃, that is over Θ1. Although
we believe that taking this supremum will not spoil the bound in cases when
over-fitting remains under control, we will not try to investigate precisely if
and when this is actually true, and provide our empirical bound as such. Let
us say only that on qualitative grounds, the values of the margin function
quantify the steepness of the contrast function R or its empirical counterpart
r, and that the definition of the empirical margin function is obtained by
substituting P, the true sample distribution, with P =

(
1
N

∑N
i=1 δ(Xi,Yi)

)⊗N ,
the empirical sample distribution, in the definition of the expected margin
function. Therefore, on qualitative grounds, it seems hopeless to presume
that R is steep when r is not, or in other words that a classification model
that would be inefficient at estimating a bootstrapped sample according to
our non-random bound would be by some miracle efficient at estimating
the true sample distribution according to the same bound. To this extent,
we feel that our empirical bounds bring a satisfactory counterpart of our
non-random bounds. Anyhow, we will also produce estimators which can be
proved to be adaptive using PAC-Bayesian tools in the next section, at the
price of a more sophisticated construction involving comparisons between a
posterior distribution and a Gibbs prior distribution or between two poste-
rior distributions.

Let us now restrict discussion to the important case when θ̃ ∈ arg minΘ1 R.
To obtain an observable bound, let θ̂ ∈ arg minθ∈Θ r(θ) and let us introduce
the empirical margin functions

ϕ(x) = sup
θ∈Θ

m′(θ, θ̂)− x
[
r(θ)− r(θ̂)

]
, x ∈ R+,
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ϕ̃(x) = sup
θ∈Θ1

m′(θ, θ̂)− x
[
r(θ)− r(θ̂)

]
, x ∈ R+.

Using the fact that m′(θ, θ̃) ≤ m′(θ, θ̂) +m′(θ̂, θ̃), we get

Corollary 1.4.10. For any positive real parameters β and λ, for any pos-
terior distribution ρ : Ω→M1

+(Θ),

P
[
ρ(R)

]
− inf

Θ1

R ≤ P
{[

1− N sinh( λ
N

)−λ
β

][
ρ(r)− r(θ̂)

]
+

K
[
ρ, πexp{−[N sinh( λ

N
)−β]r}

]
β

+ β−1 log
{
πexp{−[N sinh( λ

N
)−β]r}

[
exp
[
N sinh

(
λ
N

)
tanh

(
λ

2N

)
m′(·, θ̂)

]]}
+β−1N sinh( λN ) tanh( λ

2N )ϕ̃
[

β

N sinh( λN ) tanh( λ
2N )

(
1−

N sinh( λN )− λ
β

)]}
.

Taking β = N
2 sinh( λN ), we also obtain

P
[
ρ(R)

]
− inf

Θ1

R ≤ P

{[
N
β log

(√
1 + 4β2

N2 + 2β
N

)
− 1
]

︸ ︷︷ ︸
≤1

[
ρ(r)− r(θ̂)

]

+
1
β

{
K
[
ρ, πexp(−βr)

]
+ log

[
πexp(−βr)

{
exp
[
N
(√

1 + 4β2

N2 − 1
)
m′(·, θ̂)

]}]}

+
N

β

(√
1 + 4β2

N2 − 1
)
ϕ̃

[
log
(√

1 + 4β2

N2 + 2β
N

)
− β

N(√
1 + 4β2

N2 − 1
) ]}

.

Note that we could also use the upper bound m′(θ, θ̂) ≤ x
[
r(θ)−r(θ̂)

]
+ϕ(x)

and put α = N sinh( λN )
[
1− x tanh( λ

2N )
]
− β, to obtain

Corollary 1.4.11. For any non-negative real parameters x, α and λ, such
that α < N sinh( λN )

[
1− x tanh( λ

2N )
]
, for any posterior distribution ρ : Ω→

M1
+(Θ),

P
[
ρ(R)

]
− inf

Θ1

R

≤ P

{[
1−

N sinh( λN )
[
1− x tanh( λ

2N )
]
− λ

N sinh( λN )
[
1− x tanh( λ

2N )
]
− α

][
ρ(r)− r(θ̂)

]
+

K
[
ρ, πexp(−αr)

]
N sinh( λN )

[
1− x tanh( λ

2N )
]
− α
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+
N sinh( λN ) tanh( λ

2N )

N sinh( λN )
[
1− x tanh( λ

2N )
]
− α

×
[
ϕ(x) + ϕ̃

(
λ− α

N sinh( λN ) tanh( λ
2N )

)]}
.

Let us notice that in the case when Θ1 = Θ, the upper bound provided by
this corollary has the same general form as the upper bound provided by
Corollary 1.4.5 (page 55), with the sample distribution P replaced with the
empirical distribution of the sample P =

(
1
N

∑N
i=1 δ(Xi,Yi)

)⊗N . Therefore,
our empirical bound can be of a larger order of magnitude than our non-
random bound only in the case when our non-random bound applied to the
bootstrapped sample distribution P would be of a larger order of magnitude
than when applied to the true sample distribution P. In other words, we
can say that our empirical bound is close to our non-random bound in every
situation where the bootstrapped sample distribution P is not harder to
bound than the true sample distribution P. Although this does not prove
that our empirical bound is always of the same order as our non-random
bound, this is a good qualitative hint that this will be the case in most
practical situations of interest, since in situations of “under-fitting”, if they
exist, it is likely that the choice of the classification model is inappropriate
to the data and should be modified.

Another reassuring remark is that the empirical margin functions ϕ and
ϕ̃ behave well in the case when infΘ r = 0. Indeed in this case m′(θ, θ̂) =
r′(θ, θ̂) = r(θ), θ ∈ Θ, and thus ϕ(1) = ϕ̃(1) = 0, and

ϕ̃(x) ≤ −(x− 1) infΘ1 r, x ≥ 1.
This shows that in this case we recover the same accuracy as with non-
relative local empirical bounds. Thus the bound of Corollary 1.4.11 does
not collapse in presence of massive over-fitting in the larger model, causing
r(θ̂) = 0, which is another hint that this may be an accurate bound in many
situations.

1.4.4. Relative empirical deviation bounds. It is natural to make
use of Theorem 1.4.3 (page 53) to obtain empirical deviation bounds, since
this theorem provides an empirical variance term.

Theorem 1.4.3 is written in a way which exploits the fact that ψi takes
only the three values −1, 0 and +1. However, it will be more convenient for
the following computations to use it in its more general form, which only
makes use of the fact that ψi ∈ (−1, 1). With notation to be explained
hereafter, it can indeed also be written as

P

{
exp

[
sup

ρ∈M1
+(Θ)

{
−Nρ

{
log
[
1− λP (ψ)

]}
+Nρ

{
P
[
log(1− λψ)

]}
−K(ρ, π)

}]}
≤ 1. (1.25)
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We have used the following notation in this inequality. We have put

P =
1
N

N∑
i=1

δ(Xi,Yi),

so that P is our notation for the empirical distribution of the process
(Xi, Yi)Ni=1. Moreover we have also used

P = P(P ) =
1
N

N∑
i=1

Pi,

where it should be remembered that the joint distribution of the process
(Xi, Yi)Ni=1 is P =

⊗N
i=1 Pi. We have considered ψ(θ, θ̃) as a function defined

on X × Y as ψ(θ, θ̃)(x, y) = 1
[
y 6= fθ(x)

]
− 1

[
y 6= feθ(x)

]
, (x, y) ∈ X × Y so

that it should be understood that

P (ψ) =
1
N

N∑
i=1

P
[
ψi(θ, θ̃)

]
=

1
N

N∑
i=1

P
{
1
[
Yi 6= fθ(Xi)

]
− 1

[
Yi 6= feθ(Xi)

]}
= R′(θ, θ̃).

In the same way

P
[
log(1− λψ)

]
=

1
N

N∑
i=1

log
[
1− λψi(θ, θ̃)

]
.

Moreover integration with respect to ρ bears on the index θ, so that

ρ
{

log
[
1− λP (ψ)

]}
=
∫
θ∈Θ

log
{

1− λ

N

N∑
i=1

P
[
ψi(θ, θ̃)

]}
ρ(dθ),

ρ
{
P
[
log(1− λψ)

]}
=
∫
θ∈Θ

{
1
N

N∑
i=1

log
[
1− λψi(θ, θ̃)

]}
ρ(dθ).

We have chosen concise notation, as we did throughout these notes, in
order to make the computations easier to follow.

To get an alternate version of empirical relative deviation bounds, we
need to find some convenient way to localize the choice of the prior dis-
tribution π in equation (1.25, page 61). Here we propose replacing π with
µ = πexp{−N log[1+βP (ψ)]}, which can also be written π

exp{−N log[1+βR′(·,eθ)]}.
Indeed we see that

K(ρ, µ) = Nρ
{

log
[
1 + βP (ψ)

]}
+ K(ρ, π)

+ log
{
π
[
exp
{
−N log

[
1 + βP (ψ)

]}]}
.
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Moreover, we deduce from our deviation inequality applied to −ψ, that (as
long as β > −1),

P

{
exp
[
Nµ
{
P
[
log(1 + βψ)

]}
−Nµ

{
log
[
1 + βP (ψ)

]}]}
≤ 1.

Thus

P

{
exp
[
log
{
π
[
exp
{
−N log

[
1 + βP (ψ)

]}]}
− log

{
π
[
exp
{
−NP

[
log(1 + βψ)

]}]}]}
≤ P

{
exp
[
−Nµ

{
log
[
1 + βP (ψ)

]}
−K(µ, π)

+Nµ
{
P
[
log(1 + βψ)

]}
+ K(µ, π)

]}
≤ 1.

This can be used to handle K(ρ, µ), making use of the Cauchy–Schwarz
inequality as follows

P

{
exp

[
1
2

[
−N log

{(
1− λρ

[
P (ψ)

])(
1 + βρ

[
P (ψ)

])}
+Nρ

{
P
[
log(1− λψ)

]}
−K(ρ, π)− log

{
π
[
exp
{
−NP

[
log(1 + βψ)

]}]}]]}

≤ P

{
exp

[
−N log

{(
1− λρ

[
P (ψ)

])}

+Nρ
{
P
[
log(1− λψ)

]}
−K(ρ, µ)

]}1/2

× P

{
exp

[
log
{
π
[
exp
{
−N log

[
1 + βP (ψ)

]}]}

− log
{
π
[
exp
{
−NP

[
log(1 + βψ)

]}]}]}1/2

≤ 1.

This implies that with P probability at least 1− ε,

−N log
{(

1− λρ
[
P (ψ)

])(
1 + βρ

[
P (ψ)

])}
≤ −Nρ

{
P
[
log(1− λψ)

]}
+ K(ρ, π) + log

{
π
[
exp
{
−NP

[
log(1 + βψ)

]}]}
− 2 log(ε).
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It is now convenient to remember that

P
[
log(1− λψ)

]
=

1
2

log
(

1− λ
1 + λ

)
r′(θ, θ̃) +

1
2

log(1− λ2)m′(θ, θ̃).

We thus can write the previous inequality as

−N log
{(

1− λρ
[
R′(·, θ̃)

])(
1 + βρ

[
R′(·, θ̃)

])}
≤ N

2
log
(

1 + λ

1− λ

)
ρ
[
r′(·, θ̃)

]
− N

2
log(1− λ2)ρ

[
m′(·, θ̃)

]
+ K(ρ, π)

+ log
{
π

[
exp
{
− N

2
log
(1 + β

1− β

)
r′(·, θ̃)

− N

2
log(1− β2)m′(·, θ̃)

}]}
− 2 log(ε).

Let us assume now that θ̃ ∈ arg minΘ1 R. Let us introduce θ̂ ∈ arg minΘ r.
Decomposing r′(θ, θ̃) = r′(θ, θ̂) + r′(θ̂, θ̃) and considering that

m′(θ, θ̃) ≤ m′(θ, θ̂) +m′(θ̂, θ̃),
we see that with P probability at least 1− ε, for any posterior distribution
ρ : Ω→M1

+(Θ),

−N log
{(

1− λρ
[
R′(·, θ̃)

])(
1 + βρ

[
R′(·, θ̃)

)}
≤ N

2
log
(

1 + λ

1− λ

)
ρ
[
r′(·, θ̂)

]
− N

2
log(1− λ2)ρ

[
m′(·, θ̂)

]
+ K(ρ, π)

+ log
{
π

[
exp
{
−N

2 log
(

1+β
1−β

)[
r′(·, θ̂ )

]
− N

2 log(1− β2)m′(·, θ̂ )
}]}

+ N
2 log

[
(1+λ)(1−β)
(1−λ)(1+β)

][
r(θ̂ )− r(θ̃)

]
− N

2 log
[
(1− λ2)(1− β2)

]
m′(θ̂ , θ̃)− 2 log(ε).

Let us now define for simplicity the posterior ν : Ω → M1
+(Θ) by the

identity

dν

dπ
(θ) =

exp
{
−N

2 log
(

1+λ
1−λ

)
r′(θ, θ̂) + N

2 log(1− λ2)m′(θ, θ̂)
}

π

[
exp
{
−N

2 log
(

1+λ
1−λ

)
r′(·, θ̂) + N

2 log(1− λ2)m′(·, θ̂)
}] .

Let us also introduce the random bound

B =
1
N

log
{
ν

[
exp
[
N
2 log

[
(1+λ)(1−β)
(1−λ)(1+β)

]
r′(·, θ̂)

− N
2 log

[
(1− λ2)(1− β2)

]
m′(·, θ̂ )

]]}
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+ sup
θ∈Θ1

1
2

log
[

(1−λ)(1+β)
(1+λ)(1−β)

]
r′(θ, θ̂ )

− 1
2

log
[
(1− λ2)(1− β2)

]
m′(θ, θ̂ )− 2

N
log(ε).

Theorem 1.4.12. Using the above notation, for any real constants 0 ≤ β <
λ < 1, for any prior distribution π ∈ M1

+(Θ), for any subset Θ1 ⊂ Θ, with
P probability at least 1− ε, for any posterior distribution ρ : Ω→M1

+(Θ),

− log
{(

1− λ
[
ρ(R)− inf

Θ1

R
])(

1 + β
[
ρ(R)− inf

Θ1

R
])}
≤ K(ρ, ν)

N
+B.

Therefore,

ρ(R)− inf
Θ1

R

≤ λ− β
2λβ

(√
1 + 4

λβ

(λ− β)2

[
1− exp

(
−B − K(ρ, ν)

N

)]
− 1

)

≤ 1
λ− β

(
B +

K(ρ, ν)
N

)
.

Let us define the posterior ν̂ by the identity

dν̂

dπ
(θ) =

exp
[
−N

2 log
(

1+β
1−β

)
r′(θ, θ̂)− N

2 log(1− β2)m′(θ, θ̂)
]

π
{

exp
[
−N

2 log
(

1+β
1−β

)
r′(·, θ̂)− N

2 log(1− β2)m′(·, θ̂)
]} .

It is useful to remark that

1
N

log
{
ν

[
exp
[N

2
log
((1 + λ)(1− β)

(1− λ)(1 + β)

)
r′(·, θ̂)

− N

2
log
[
(1− λ2)(1− β2)

]
m′(·, θ̂)

]]}

≤ ν̂
{

1
2

log
((1 + λ)(1− β)

(1− λ)(1 + β)

)
r′(·, θ̂)

− 1
2

log
[
(1− λ2)(1− β2)

]
m′(·, θ̂)

}
.

This inequality is a special case of

log
{
π
[
exp(g)

]}
− log

{
π
[
exp(h)

]}
=
∫ 1

α=0
πexp[h+α(g−h)](g − h)dα ≤ πexp(g)(g − h),

which is a consequence of the convexity of α 7→ log
{
π
[
exp
[
h+α(g−h)

]]}
.
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Let us introduce as previously ϕ(x) = supθ∈Θm
′(θ, θ̂)−x r′(θ, θ̂), x ∈ R+.

Let us moreover consider ϕ̃(x) = supθ∈Θ1
m′(θ, θ̂)−x r′(θ, θ̂), x ∈ R+. These

functions can be used to produce a result which is slightly weaker, but maybe
easier to read and understand. Indeed, we see that, for any x ∈ R+, with P
probability at least 1− ε, for any posterior distribution ρ,

−N log
{(

1− λρ
[
R′(·, θ̃)

])(
1 + βρ

[
R′(·, θ̃)

])}
≤ N

2
log
[

(1 + λ)
(1− λ)(1− λ2)x

]
ρ
[
r′(·, θ̂)

]
− N

2
log
[
(1− λ2)(1− β2)

]
ϕ(x) + K(ρ, π)

+ log
{
π

[
exp
{
−N

2 log
[

(1+β)
(1−β)(1−β2)x

]
r′(·, θ̂)

}]}

− N

2
log
[
(1− λ2)(1− β2)

]
ϕ̃

 log
[

(1+λ)(1−β)
(1−λ)(1+β)

]
− log [(1− λ2)(1− β2)]


− 2 log(ε)

=
∫ N

2
log
h

(1+λ)

(1−λ)(1−λ2)x

i
N
2

log
h

(1+β)

(1−β)(1−β2)x

i πexp(−αr)
[
r′(·, θ̂)

]
dα

+ K(ρ, π
exp{−N

2
log[

(1+λ)

(1−λ)(1−λ2)x
]r})− 2 log(ε)

− N

2
log
[
(1− λ2)(1− β2)

] ϕ(x) + ϕ̃

 log
[

(1+λ)(1−β)
(1−λ)(1+β)

]
− log[(1− λ2)(1− β2)]

 .
Theorem 1.4.13. With the previous notation, for any real constants 0 ≤
β < λ < 1, for any positive real constant x, for any prior probability distri-
bution π ∈M1

+(Θ), for any subset Θ1 ⊂ Θ, with P probability at least 1− ε,
for any posterior distribution ρ : Ω→M1

+(Θ), putting

B(ρ) =
1

N(λ− β)

∫ N
2

log
h

(1+λ)

(1−λ)(1−λ2)x

i
N
2

log
h

(1+β)

(1−β)(1−β2)x

i πexp(−αr)
[
r′(·, θ̂)

]
dα

+
K(ρ, π

exp{−N
2

log[
(1+λ)

(1−λ)(1−λ2)x
]r})− 2 log(ε)

N(λ− β)

− 1
2(λ− β)

log
[
(1− λ2)(1− β2)

] ϕ(x) + ϕ̃

 log
[

(1+λ)(1−β)
(1−λ)(1+β)

]
− log[(1− λ2)(1− β2)]


≤ 1
N(λ− β)

de log

 log
[

(1+λ)
(1−λ)(1−λ2)x

]
log
(

(1+β)
(1−β)(1−β2)x

)

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+
K(ρ, π

exp{−N
2

log[
(1+λ)

(1−λ)(1−λ2)x
]r})− 2 log(ε)

N(λ− β)

− 1
2(λ− β)

log
[
(1−λ2)(1−β2)

] ϕ(x) + ϕ̃

 log
[

(1+λ)(1−β)
(1−λ)(1+β)

]
− log[(1− λ2)(1− β2)]

 ,
the following bounds hold true:

ρ(R)− inf
Θ1

R

≤ λ− β
2λβ

(√
1 +

4λβ
(λ− β)2

{
1− exp

[
−(λ− β)B(ρ)

]}
− 1

)
≤ B(ρ).

Let us remark that this alternative way of handling relative deviation bounds
made it possible to carry on with non-linear bounds up to the final result.
For instance, if λ = 0.5, β = 0.2 and B(ρ) = 0.1, the non-linear bound gives
ρ(R)− infΘ1 R ≤ 0.096.
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Chapter 2

Comparing posterior
distributions to Gibbs priors

2.1. Bounds relative to a Gibbs distribution

We now come to an approach to relative bounds whose performance can
be analysed with PAC-Bayesian tools.

The empirical bounds at the end of the previous chapter involve taking
suprema in θ ∈ Θ, and replacing the expected margin function ϕ with some
empirical counterparts ϕ or ϕ̃, which may prove unsafe when using very
complex classification models.

We are now going to focus on the control of the divergence K
[
ρ, πexp(−βR)

]
.

It is already obvious, we hope, that controlling this divergence is the crux
of the matter, and that it is a way to upper bound the mutual information
between the training sample and the parameter, which can be expressed as
K
[
ρ,P(ρ)

]
= K

[
ρ, πexp(−βR)

]
−K

[
P(ρ), πexp(−βR)

]
, as explained on page 28.

Through the identity

K
[
ρ, πexp(−βR)

]
= β

[
ρ(R)− πexp(−βR)(R)

]
+ K(ρ, π)−K

[
πexp(−βR), π

]
, (2.1)

we see that the control of this divergence is related to the control of the
difference ρ(R)− πexp(−βR)(R). This is the route we will follow first.

Thus comparing any posterior distribution with a Gibbs prior distribu-
tion will provide a first way to build an estimator which can be proved to
reach adaptively the best possible asymptotic error rate under Mammen and
Tsybakov margin assumptions and parametric complexity assumptions (at
least as long as orders of magnitude are concerned, we will not discuss the
question of asymptotically optimal constants).

Then we will provide an empirical bound for the Kullback divergence
K
[
ρ, πexp(−βR)

]
itself. This will serve to address the question of model selec-

tion, which will be achieved by comparing the performance of two posterior
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distributions possibly supported by two different models. This will also pro-
vide a second way to build estimators which can be proved to be adaptive
under Mammen and Tsybakov margin assumptions and parametric com-
plexity assumptions (somewhat weaker than with the first method).

Finally, we will present two-step localization strategies, in which the per-
formance of the posterior distribution to be analysed is compared with a
two-step Gibbs prior.

2.1.1. Comparing a posterior distribution with a Gibbs prior.
Similarly to Theorem 1.4.3 (page 53) we can prove that for any prior distri-
bution π̃ ∈M1

+(Θ),

P

{
π̃ ⊗ π̃

{
exp
[
−N log(1−N tanh

( γ
N

)
R′)

− γr′ −N log
[
cosh( γN )

]
m′
]}}

≤ 1. (2.2)

Replacing π̃ with πexp(−βR) and considering the posterior distribution ρ ⊗
πexp(−βR), provides a starting point in the comparison of ρ with πexp(−βR);
we can indeed state with P probability at least 1− ε that

−N log
{

1− tanh
( γ
N

)[
ρ(R)− πexp(−βR)(R)

]}
≤ γ

[
ρ(r)− πexp(−βR)(r)

]
+N log

[
cosh( γN )

][
ρ⊗ πexp(−βR)

]
(m′)

+ K
[
ρ, πexp(−βR)

]
− log(ε). (2.3)

Using equation (2.1, page 69) to handle the entropy term, we get

−N log
{

1− tanh( γN )
[
ρ(R)− πexp(−βR)(R)

]}
− β

[
ρ(R)− πexp(−βR)(R)

]
≤ γ

[
ρ(r)− πexp(−βR)(r)

]
+N log

[
cosh

( γ
N

)]
ρ⊗ πexp(−βR)(m

′)

+ K(ρ, π)−K
[
πexp(−βR), π

]
− log(ε). (2.4)

We can then decompose in the right-hand side γ
[
ρ(r)−πexp(−βR)(r)

]
into

(γ − λ)
[
ρ(r)− πexp(−βR)(r)

]
+ λ
[
ρ(r)− πexp(−βR)(r)

]
for some parameter λ

to be set later on and use the fact that

λ
[
ρ(r)− πexp(−βR)(r)

]
+N log

[
cosh( γN )

]
ρ⊗ πexp(−βR)(m

′)

+ K(ρ, π)−K
[
πexp(−βR), π

]
≤ λρ(r) + K(ρ, π) + log

{
π
[
exp
{
−λr +N log

[
cosh( γN )

]
ρ(m′)

}]}
= K

[
ρ, πexp(−λr)

]
+ log

{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
ρ(m′)

}]}
,

to get rid of the appearance of the unobserved Gibbs prior πexp(−βR) in most
places of the right-hand side of our inequality, leading to
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Theorem 2.1.1. For any real constants β and γ, with P probability at least
1 − ε, for any posterior distribution ρ : Ω → M1

+(Θ), for any real constant
λ,[

N tanh( γN )− β
][
ρ(R)− πexp(−βR)(R)

]
≤ −N log

{
1− tanh( γN )

[
ρ(R)− πexp(−βR)(R)

]}
− β

[
ρ(R)− πexp(−βR)(R)

]
≤ (γ − λ)

[
ρ(r)− πexp(−βR)(r)

]
+ K

[
ρ, πexp(−λr)

]
+ log

{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
ρ(m′)

}]}
− log(ε)

= K
[
ρ, πexp(−γr)

]
+ log

{
πexp(−γr)

[
exp
{

(γ − λ)r +N log
[
cosh( γN )

]
ρ(m′)

}]}
− (γ − λ)πexp(−βR)(r)− log(ε).

We would like to have a fully empirical upper bound even in the case when
λ 6= γ. This can be done by using the theorem twice. We will need a lemma.

Lemma 2.1.2 For any probability distribution π ∈M1
+(Θ), for any bounded

measurable functions g, h : Θ→ R,

πexp(−g)(g)− πexp(−h)(g) ≤ πexp(−g)(h)− πexp(−h)(h).

Proof. Let us notice that

0 ≤ K(πexp(−g), πexp(−h)) = πexp(−g)(h)+log
{
π
[
exp(−h)

]}
+K(πexp(−g), π)

= πexp(−g)(h)− πexp(−h)(h)−K(πexp(−h), π) + K(πexp(−g), π)

= πexp(−g)(h)−πexp(−h)(h)−K(πexp(−h), π)−πexp(−g)(g)−log
{
π
[
exp(−g)

]}
.

Moreover

− log
{
π
[
exp(−g)

]}
≤ πexp(−h)(g) + K(πexp(−h), π),

which ends the proof. �
For any positive real constants β and λ, we can then apply Theorem 2.1.1

to ρ = πexp(−λr), and use the inequality

λ

β

[
πexp(−λr)(r)− πexp(−βR)(r)

]
≤ πexp(−λr)(R)− πexp(−βR)(R) (2.5)

provided by the previous lemma. We thus obtain with P probability at least
1− ε

−N log
{

1− tanh( γN )λβ
[
πexp(−λr)(r)− πexp(−βR)(r)

]}
− γ
[
πexp(−λr)(r)− πexp(−βR)(r)

]
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≤ log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}
− log(ε).

Let us introduce the convex function

Fγ,α(x) = −N log
[
1− tanh( γN )x

]
− αx ≥

[
N tanh( γN )− α

]
x.

With P probability at least 1− ε,

− πexp(−βR)(r) ≤ inf
λ∈R∗+

{
−πexp(−λr)(r)

+
β

λ
F−1

γ,βγ
λ

[
log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}

− log(ε)
]}
.

Since Theorem 2.1.1 holds uniformly for any posterior distribution ρ, we can
apply it again to some arbitrary posterior distribution ρ. We can moreover
make the result uniform in β and γ by considering some atomic measure
ν ∈M1

+(R) on the real line and using a union bound. This leads to

Theorem 2.1.3. For any atomic probability distribution on the positive
real line ν ∈ M1

+(R+), with P probability at least 1 − ε, for any posterior
distribution ρ : Ω→M1

+(Θ), for any positive real constants β and γ,[
N tanh( γN )− β

][
ρ(R)− πexp(−βR)(R)

]
≤ Fγ,β

[
ρ(R)− πexp(−βR)(R)

]
≤ B(ρ, β, γ), where

B(ρ, β, γ) = inf
λ1∈R+,λ1≤γ

λ2∈R,λ2>
βγ
N

tanh( γ
N

)−1

{
K
[
ρ, πexp(−λ1r)

]
+ (γ − λ1)

[
ρ(r)− πexp(−λ2r)(r)

]
+ log

{
πexp(−λ1r)

[
exp
{
N log

[
cosh( γN )

]
ρ(m′)

}]}
− log

[
εν(β)ν(γ)

]
+ (γ − λ1)

β

λ2
F−1

γ,βγ
λ2

[
log
{

πexp(−λ2r)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λ2r)(m

′)
}]}

− log
[
εν(β)ν(γ)

]]}

≤ inf
λ1∈R+,λ1≤γ

λ2∈R,λ2>
βγ
N

tanh( γ
N

)−1

{
K
[
ρ, πexp(−λ1r)

]
+ (γ − λ1)

[
ρ(r)− πexp(−λ2r)(r)

]
+ log

{
πexp(−λ1r)

[
exp
{
N log

[
cosh( γN )

]
ρ(m′)

}]}
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+
β

λ2

(1− λ1
γ )[

N
γ tanh( γN )− β

λ2

] log
{
πexp(−λ2r)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λ2r)(m

′)
}]}

−
{

1 +
β

λ2

(1−λ1
γ

)

[N
γ

tanh( γ
N

)− β
λ2

]

}
log
[
εν(β)ν(γ)

]}
,

where we have written for short ν(β) and ν(γ) instead of ν({β}) and ν({γ}).

Let us notice that B(ρ, β, γ) = +∞ when ν(β) = 0 or ν(γ) = 0, the unifor-
mity in β and γ of the theorem therefore necessarily bears on a countable
number of values of these parameters. We can typically choose distributions
for ν such as the one used in Theorem 1.2.8 (page 27): namely we can put
for some positive real ratio α > 1

ν(αk) =
1

(k + 1)(k + 2)
, k ∈ N,

or alternatively, since we are interested in values of the parameters less than
N , we can prefer

ν(αk) =
log(α)

log(αN)
, 0 ≤ k < log(N)

log(α)
.

We can also use such a coding distribution on dyadic numbers as the one
defined by equation (1.7, page 29).

Following the same route as for Theorem 1.3.15 (page 46), we can also
prove the following result about the deviations under any posterior distri-
bution ρ:

Theorem 2.1.4 For any ε ∈)0, 1(, with P probability at least 1− ε, for any
posterior distribution ρ : Ω→M1

+(Θ), with ρ probability at least 1− ξ,

Fγ,β
[
R(θ̂)− πexp(−βR)(R)

]
≤ inf

λ1∈R+,λ1≤γ,
λ2∈R,λ2>

βγ
N

tanh( γ
N

)−1

{
log

[
dρ

dπexp(−λ1r)
(θ̂ )

]

+ (γ − λ1)
[
r(θ̂ )− πexp(−λ2r)(r)

]
+ log

{
πexp(−λ1r)

[
exp
{
N log

[
cosh( γN )

]
m′(·, θ̂ )

}]}
− log

[
εξν(β)ν(γ)

]
+ (γ − λ1)

β

λ2
F−1

γ,βγ
λ2

[
log
{

πexp(−λ2r)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λ2r)(m

′)
}]}

− log
[
εν(β)ν(γ)

]]}
.
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The only tricky point is to justify that we can still take an infimum in λ1

without using a union bound. To justify this, we have to notice that the
following variant of Theorem 2.1.1 (page 71) holds: with P probability at
least 1 − ε, for any posterior distribution ρ : Ω → M1

+(Θ), for any real
constant λ,

ρ
{
Fγ,β

[
R− πexp(−βR)(R)

]}
≤ K

[
ρ, πexp(−γr)

]
+ ρ

[
inf
λ∈R

log
{
πexp(−γr)

[
exp
{

(γ − λ)r +N log
[
cosh( γN

)]
m′(·, θ̂ )

}]}
− (γ − λ)πexp(−βR)(r)

]
− log(ε).

We leave the details as an exercise.

2.1.2. The effective temperature of a posterior distribution.

Using the parametric approximation πexp(−αr)(r) − infΘ r ' de
α , we get as

an order of magnitude

B(πexp(−λ1r), β, γ) . −(γ − λ1)de
[
λ−1

2 − λ
−1
1

]
+ 2de log

λ1

λ1 −N log
[
cosh( γN )

]
x

+ 2
β

λ2

(1− λ1
γ )[

N
γ tanh( γN )− β

λ2

]de log

(
λ2

λ2 −N log
[
cosh( γN )

]
x

)

+ 2N log
[
cosh( γN )

][
1 +

β

λ2

(1− λ1
γ )[

N
γ tanh( γN )− β

λ2

]]ϕ̃(x)

−
{

1 +
β

λ2

(1− λ1
γ )

[Nγ tanh( γN )− β
λ2

]

}
log
[
ν(β)ν(γ)ε

]
.

Therefore, if the empirical dimension de stays bounded when N increases, we
are going to obtain a negative upper bound for any values of the constants
λ1 > λ2 > β, as soon as γ and N

γ are chosen to be large enough. This
ability to obtain negative values for the bound B(πexp(−λ1r), γ, β), and more
generally B(ρ, γ, β), leads the way to introducing the new concept of the
effective temperature of an estimator.

Definition 2.1.1 For any posterior distribution ρ : Ω→M1
+(Θ) we define

the effective temperature T (ρ) ∈ R ∪ {−∞,+∞} of ρ by the equation

ρ(R) = πexp(− R
T (ρ)

)(R).

Note that β 7→ πexp(−βR)(R) : R ∪ {−∞,+∞} → (0, 1) is continuous and
strictly decreasing from ess supπ R to ess infπ R (as soon as these two bounds
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do not coincide). This shows that the effective temperature T (ρ) is a well-
defined random variable.

Theorem 2.1.3 provides a bound for T (ρ), indeed:

Proposition 2.1.5. Let

β̂(ρ) = sup
{
β ∈ R; inf

γ,N tanh( γ
N

)>β
B(ρ, β, γ) ≤ 0

}
,

where B(ρ, β, γ) is as in Theorem 2.1.3 (page 72). Then with P probability
at least 1− ε, for any posterior distribution ρ : Ω→M1

+(Θ), T (ρ) ≤ β̂(ρ)−1,
or equivalently ρ(R) ≤ π

exp[−bβ(ρ)R]
(R).

This notion of effective temperature of a (randomized) estimator ρ is inter-
esting for two reasons:
• the difference ρ(R)−πexp(−βR)(R) can be estimated with better accuracy

than ρ(R) itself, due to the use of relative deviation inequalities, leading to
convergence rates up to 1/N in favourable situations, even when infΘR is
not close to zero;
• and of course πexp(−βR)(R) is a decreasing function of β, thus being able

to estimate ρ(R)−πexp(−βR)(R) with some given accuracy, means being able
to discriminate between values of ρ(R) with the same accuracy, although
doing so through the parametrization β 7→ πexp(−βR)(R), which can neither
be observed nor estimated with the same precision!

2.1.3. Analysis of an empirical bound for the effective tempera-
ture. We are now going to launch into a mathematically rigorous analysis
of the bound B(πexp(−λ1r),β,γ) provided by Theorem 2.1.3 (page 72), to show
that infρ∈M1

+(Θ) πexp[−bβ(ρ)R]
(R) converges indeed to infΘR at some optimal

rate in favourable situations.
It is more convenient for this purpose to use deviation inequalities involv-

ing M ′ rather than m′. It is straightforward to extend Theorem 1.4.2 (page
52) to

Theorem 2.1.6. For any real constants β and γ, for any prior distributions
π, µ ∈M1

+(Θ), with P probability at least 1−η, for any posterior distribution
ρ : Ω→M1

+(Θ),

γρ⊗ πexp(−βR)

[
Ψ γ
N

(R′,M ′)
]
≤ γρ⊗ πexp(−βR)(r

′) + K(ρ, µ)− log(η).

In order to transform the left-hand side into a linear expression and in the
same time localize this theorem, let us choose µ defined by its density

dµ

dπ
(θ1) = C−1 exp

[
−βR(θ1)

− γ
∫

Θ

{
Ψ γ
N

[
R′(θ1, θ2),M ′(θ1, θ2)

]
− N

γ sinh( γN )R′(θ1, θ2)
}
πexp(−βR)(dθ2)

]
,
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where C is such that µ(Θ) = 1. We get

K(ρ, µ) = βρ(R) + γρ⊗ πexp(−βR)

[
Ψ γ
N

(R′,M ′)− N
γ sinh( γN )R′

]
+ K(ρ, π)

+ log
{∫

Θ
exp
[
−βR(θ1)

− γ
∫

Θ

{
Ψ γ
N

[
R′(θ1, θ2),M ′(θ1, θ2)

]
− N

γ sinh( γN )R′(θ1, θ2)
}
πexp(−βR)(dθ2)

]
π(dθ1)

}
= β

[
ρ(R)− πexp(−βR)(R)

]
+ γρ⊗ πexp(−βR)

[
Ψ γ
N

(R′,M ′)− N
γ sinh( γN )R′

]
+ K(ρ, π)−K(πexp(−βR), π)

+ log
{∫

Θ
exp
[
−γ
∫

Θ

{
Ψ γ
N

[
R′(θ1, θ2),M ′(θ1, θ2)

]
− N

γ sinh( γN )R′(θ1, θ2)
}
πexp(−βR)(dθ2)

]
πexp(−βR)(dθ1)

}
.

Thus with P probability at least 1− η,[
N sinh( γN )− β

][
ρ(R)− πexp(−βR)(R)

]
≤ γ

[
ρ(r)−πexp(−βR)(r)

]
+K(ρ, π)−K(πexp(−βR), π)−log(η)+C(β, γ)

where C(β, γ) = log
{∫

Θ
exp
[
−γ
∫

Θ

{
Ψ γ
N

[
R′(θ1, θ2),M ′(θ1, θ2)

]
− N

γ sinh( γN )R′(θ1, θ2)
}
πexp(−βR)(dθ2)

]
πexp(−βR)(dθ1)

}
. (2.6)

Remarking that

K
[
ρ, πexp(−βR)

]
= β

[
ρ(R)− πexp(−βR)(R)

]
+ K(ρ, π)−K(πexp(−βR), π),

we deduce from the previous inequality

Theorem 2.1.7. For any real constants β and γ, with P probability at
least 1− η, for any posterior distribution ρ : Ω→M1

+(Θ),

N sinh( γN )
[
ρ(R)− πexp(−βR)(R)

]
≤ γ

[
ρ(r)− πexp(−βR)(r)

]
+ K

[
ρ, πexp(−βR)

]
− log(η) + C(β, γ).

We can also go into a slightly different direction, starting back again from
equation (2.6, page 76) and remarking that for any real constant λ,

λ
[
ρ(r)− πexp(−βR)(r)

]
+ K(ρ, π)−K(πexp(−βR), π)

≤ λρ(r) + K(ρ, π) + log
{
π
[
exp(−λr)

]}
= K

[
ρ, πexp(−λr)

]
.

This leads to
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Theorem 2.1.8. For any real constants β and γ, with P probability at
least 1− η, for any real constant λ,

[
N sinh( γN )− β

][
ρ(R)− πexp(−βR)(R)

]
≤ (γ − λ)

[
ρ(r)− πexp(−βR)(r)

]
+ K

[
ρ, πexp(−λr)

]
− log(η) + C(β, γ),

where the definition of C(β, γ) is given by equation (2.6, page 76).

We can now use this inequality in the case when ρ = πexp(−λr) and com-
bine it with Inequality (2.5, page 71) to obtain

Theorem 2.1.9 For any real constants β and γ, with P probability at least
1− η, for any real constant λ,[

Nλ
β sinh( γN )− γ

][
πexp(−λr)(r)− πexp(−βR)(r)

]
≤ C(β, γ)− log(η).

We deduce from this theorem

Proposition 2.1.10 For any real positive constants β1, β2 and γ, with P
probability at least 1 − η, for any real constants λ1 and λ2, such that λ2 <
β2

γ
N sinh( γN )−1 and λ1 > β1

γ
N sinh( γN )−1,

πexp(−λ1r)(r)− πexp(−λ2r)(r) ≤ πexp(−β1R)(r)− πexp(−β2R)(r)

+
C(β1, γ) + log(2/η)
Nλ1
β1

sinh( γN )− γ
+
C(β2, γ) + log(2/η)
γ − Nλ2

β2
sinh( γN )

.

Moreover, πexp(−β1R) and πexp(−β2R) being prior distributions, with P prob-
ability at least 1− η,

γ
[
πexp(−β1R)(r)− πexp(−β2R)(r)

]
≤ γπexp(−β1R) ⊗ πexp(−β2R)

[
Ψ− γ

N
(R′,M ′)

]
− log(η).

Hence

Proposition 2.1.11 For any positive real constants β1, β2 and γ, with P
probability at least 1− η, for any positive real constants λ1 and λ2 such that
λ2 < β2

γ
N sinh( γN )−1 and λ1 > β1

γ
N sinh( γN )−1,

πexp(−λ1r)(r)− πexp(−λ2r)(r)

≤ πexp(−β1R) ⊗ πexp(−β2R)

[
Ψ− γ

N
(R′,M ′)

]
+

log( 3
η )

γ
+
C(β1, γ) + log( 3

η )
Nλ1
β1

sinh( γN )− γ
+
C(β2, γ) + log( 3

η )

γ − Nλ2
β2

sinh( γN )
.
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In order to achieve the analysis of the bound B(πexp(−λ1r), β, γ) given by
Theorem 2.1.3 (page 72), it now remains to bound quantities of the general
form

log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}

= sup
ρ∈M1

+(Θ)

N log
[
cosh( γN )

]
ρ⊗ πexp(−λ)(m

′)−K
[
ρ, πexp(−λr)

]
.

Let us consider the prior distribution µ ∈ M1
+(Θ × Θ) on couples of

parameters defined by the density

dµ

d(π ⊗ π)
(θ1, θ2) = C−1 exp

{
−βR(θ1)− βR(θ2) + αΦ− α

N

[
M ′(θ1, θ2)

]}
,

where the normalizing constant C is such that µ(Θ × Θ) = 1. Since for
fixed values of the parameters θ and θ′ ∈ Θ, m′(θ, θ′), like r(θ), is a sum
of independent Bernoulli random variables, we can easily adapt the proof
of Theorem 1.1.4 on page 17, to establish that with P probability at least
1− η, for any posterior distribution ρ and any real constant λ,

αρ⊗ πexp(−λr)(m
′) ≤ αρ⊗ πexp(−λr)

[
Φ− α

N
(M ′)

]
+ K(ρ⊗ πexp(−λr), µ)− log(η)

= K
[
ρ, πexp(−βR)

]
+ K

[
πexp(−λr), πexp(−βR)

]
+ log

{
πexp(−βR) ⊗ πexp(−βR)

[
exp
(
αΦ− α

N
◦M ′

)]}
− log(η).

Thus for any real constant β and any positive real constants α and γ, with
P probability at least 1− η, for any real constant λ,

log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}

≤ sup
ρ∈M1

+(Θ)

(
N
α log

[
cosh( γN )

]{
K
[
ρ, πexp(−βR)

]
+ K

[
πexp(−λr), πexp(−βR)

]
+ log

{
πexp(−βR) ⊗ πexp(−βR)

[
exp(αΦ− α

N
◦M ′)

]}
− log(η)

}
−K

[
ρ, πexp(−λr)

])
. (2.7)

To finish, we need some appropriate upper bound for the entropy
K
[
ρ, πexp(−βR)

]
. This question can be handled in the following way: using

Theorem 2.1.7 (page 76), we see that for any positive real constants γ and
β, with P probability at least 1− η, for any posterior distribution ρ,

K
[
ρ, πexp(−βR)

]
= β

[
ρ(R)− πexp(−βR)(R)

]
+ K(ρ, π)−K(πexp(−βR), π)

≤ β

N sinh( γN )

[
γ
[
ρ(r)− πexp(−βR)(r)

]
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+ K
[
ρ, πexp(−βR)

]
− log(η) + C(β, γ)

]
+ K(ρ, π)−K(πexp(−βR), π)

≤ K
[
ρ, π

exp(− βγ

N sinh(
γ
N

)
r)

]
+

β

N sinh( γN )

{
K
[
ρ, πexp(−βR)

]
+ C(β, γ)− log(η)

}
.

In other words,

Theorem 2.1.12. For any positive real constants β and γ such that β <
N sinh( γN ), with P probability at least 1 − η, for any posterior distribution
ρ : Ω→M1

+(Θ),

K
[
ρ, πexp(−βR)

]
≤

K
[
ρ, πexp[−β γ

N
sinh( γ

N
)−1r]

]
1− β

N sinh( γN )

+
C(β, γ)− log(η)
N sinh( γN )

β
− 1

,

where the quantity C(β, γ) is defined by equation (2.6, page 76). Equiva-
lently, it will be in some cases more convenient to use this result in the
form: for any positive real constants λ and γ, with P probability at least
1− η, for any posterior distribution ρ : Ω→M1

+(Θ),

K
[
ρ, πexp[−λN

γ
sinh( γ

N
)R]

]
≤

K
[
ρ, πexp(−λr)

]
1− λ

γ

+
C(λNγ sinh( γN ), γ)− log(η)

λ
β − 1

.

Choosing in equation (2.7, page 78) α =
N log

[
cosh( γN )

]
1− β

N sinh( γ
N

)

and

β = λNγ sinh( γN ), so that α =
N log

[
cosh( γN )

]
1− λ

γ

, we obtain with P proba-

bility at least 1− η,

log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}

≤ 2λ
γ

[
C(β, γ) + log( 2

η )
]

+
(

1− λ
γ

)[
log
{
πexp(−βR) ⊗ πexp(−βR)

[
exp(αΦ− α

N
◦M ′)

]}
+ log( 2

η )
]
.

This proves

Proposition 2.1.13. For any positive real constants λ < γ, with P prob-
ability at least 1− η,
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log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}

≤ 2λ
γ

[
C(Nλγ sinh( γN ), γ) + log( 2

η )
]

+
(

1− λ
γ

)
log
{
π⊗2

exp[−Nλ
γ

sinh( γ
N

)R]

[
exp
(
N log[cosh( γN )]

1− λ
γ

Φ
−

log[cosh(
γ
N

)]

1−λγ

◦M ′
)]}

+
(

1− λ
γ

)
log( 2

η ).

We are now ready to analyse the bound B(πexp(−λ1r), β, γ) of Theorem
2.1.3 (page 72).

Theorem 2.1.14. For any positive real constants λ1, λ2, β1, β2, β and γ,
such that

λ1 < γ, β1 <
Nλ1
γ sinh( γN ),

λ2 < γ, β2 >
Nλ2
γ sinh( γN ),

β < Nλ2
γ tanh( γN ),

with P probability 1−η, the bound B(πexp(−λ1r), β, γ) of Theorem 2.1.3 (page
72) satisfies

B(πexp(−λ1r), β, γ)

≤ (γ − λ1)

{
πexp(−β1R) ⊗ πexp(−β2R)

[
Ψ− γ

N
(R′,M ′)

]
+

log( 7
η )

γ

+
C(β1, γ) + log( 7

η )
Nλ1
β1

sinh( γN )− γ
+
C(β2, γ) + log( 7

η )

γ − Nλ2
β2

sinh( γN )

}

+
2λ1

γ

[
C
(
Nλ1
γ sinh( γN ), γ

)
+ log( 7

η )
]

+
(

1− λ1
γ

)
log
{
π⊗2

exp[−Nλ1
γ

sinh( γ
N

)R]

[
exp
(
N log[cosh( γ

N
)]

1−λ1
γ

Φ
−

log[cosh(
γ
N

)]

1−λ1
γ

◦M ′
)]}

+
(

1− λ1
γ

)
log( 7

η )− log
[
ν({β})ν({γ})ε

]
+ (γ − λ1) βλ2

F−1

γ,βγ
λ2

{
2λ2

γ

[
C
(
Nλ2
γ sinh( γN ), γ

)
+ log

(
7
η

)]
+
(

1− λ2
γ

)
log
{
π⊗2

exp[−Nλ2
γ

sinh( γ
N

)R]

[
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exp
(
N log[cosh( γN )]

1− λ2
γ

Φ
−

log[cosh(
γ
N

)]

1−λ2
γ

◦M ′
)]}

+
(

1− λ2
γ

)
log
(

7
η

)
− log

[
ν({β})ν({γ})ε

]}
,

where the function C(β, γ) is defined by equation (2.6, page 76).

2.1.4. Adaptation to parametric and margin assumptions. To help
understand the previous theorem, it may be useful to give linear upper-
bounds to the factors appearing in the right-hand side of the previous in-
equality. Introducing θ̃ such that R(θ̃) = infΘR (assuming that such a
parameter exists) and remembering that

Ψ−a(p,m) ≤ a−1 sinh(a)p+ 2a−1 sinh(a2 )2m, a ∈ R+,

Φ−a(p) ≤ a−1
[
exp(a)− 1

]
p, a ∈ R+,

Ψa(p,m) ≥ a−1 sinh(a)p− 2a−1 sinh(a2 )2m, a ∈ R+,

M ′(θ1, θ2) ≤M ′(θ1, θ̃) +M ′(θ2, θ̃), θ1, θ2 ∈ Θ,

M ′(θ1, θ̃) ≤ xR′(θ1, θ̃) + ϕ(x), x ∈ R+, θ1 ∈ Θ,

the last inequality being rather a consequence of the definition of ϕ than a
property of M ′, we easily see that

πexp(−β1R) ⊗ πexp(−β2R)

[
Ψ− γ

N
(R′,M ′)

]
≤ N

γ sinh( γN )
[
πexp(−β1R)(R)− πexp(−β2R)(R)

]
+ 2N

γ sinh( γ
2N )2πexp(−β1R) ⊗ πexp(−β2R)(M

′)

≤ N
γ sinh( γN )

[
πexp(−β1R)(R)− πexp(−β2R)(R)

]
+

2xN
γ

sinh( γ
2N )2

{
πexp(−β1R)

[
R′(·, θ̃)

]
+ πexp(−β2R)

[
R′(·, θ̃)

]}
+

4N
γ

sinh( γ
2N )2ϕ(x),

that

C(β, γ) ≤ log
{
πexp(−βR)

{
exp
[
2N sinh

( γ
2N

)2
πexp(−βR)(M

′)
]}}

≤ log
{
πexp(−βR)

{
exp
[
2N sinh

( γ
2N

)2
M ′(·, θ̃)

]}}
+ 2N sinh( γ

2N )2πexp(−βR)

[
M ′(·, θ̃)

]
≤ log

{
πexp(−βR)

{
exp
[
2xN sinh( γ

2N )2R′(·, θ̃)
]}}

+ 2xN sinh( γ
2N )2πexp(−βR)

[
R′(·, θ̃)

]
+ 4N sinh( γ

2N )2ϕ(x)
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=
∫ β

β−2xN sinh( γ
2N

)2
πexp(−αR)

[
R′(·, θ̃)

]
dα

+ 2xN sinh( γ
2N )2πexp(−βR)

[
R′(·, θ̃)

]
+ 4N sinh( γ

2N )2ϕ(x)

≤ 4xN sinh( γ
2N )2πexp[−(β−2xN sinh( γ

2N
)2)R]

[
R′(·, θ̃)

]
+ 4N sinh( γ

2N )2ϕ(x),

and that

log
{
π⊗2

exp(−βR)

[
exp
(
NαΦ−α◦M ′

)]}
≤ 2 log

{
πexp(−βR)

[
exp
(
N
[
exp(α)− 1

]
M ′(·, θ̃)

)]}
≤ 2xN

[
exp(α)− 1

]
πexp[−(β−xN [exp(α)−1])R]

[
R′(·, θ̃)

]
+ 2xN

[
exp(α)− 1

]
ϕ(x).

Let us push further the investigation under the parametric assumption
that for some positive real constant d

lim
β→+∞

βπexp(−βR)

[
R′(·, θ̃)

]
= d, (2.8)

This assumption will for instance hold true with d = n
2 when R : Θ→ (0, 1)

is a smooth function defined on a compact subset Θ of Rn that reaches its
minimum value on a finite number of non-degenerate (i.e. with a positive
definite Hessian) interior points of Θ, and π is absolutely continuous with
respect to the Lebesgue measure on Θ and has a smooth density.

In case of assumption (2.8), if we restrict ourselves to sufficiently large
values of the constants β, β1, β2, λ1, λ2 and γ (the smaller of which is as
a rule β, as we will see), we can use the fact that for some (small) positive
constant δ, and some (large) positive constant A,

d

α
(1− δ) ≤ πexp(−αR)

[
R′(·, θ̃)

]
≤ d

α
(1 + δ), α ≥ A. (2.9)

Under this assumption,

πexp(−β1R) ⊗ πexp(−β2R)

[
Ψ− γ

N
(R′,M ′)

]
≤ N

γ sinh( γN )
[
d
β1

(1 + δ)− d
β2

(1− δ)
]

+ 2xN
γ sinh( γ

2N )2(1 + δ)
[
d
β1

+ d
β2

]
+ 4N

γ sinh( γ
2N )2ϕ(x).

C(β, γ) ≤ d(1 + δ) log
(

β
β−2xN sinh( γ

2N
)2

)
+ 2xN sinh( γ

2N )2 (1+δ)d
β + 4N sinh( γ

2N )2ϕ(x).

log
{
π⊗2

exp(−βR)

[
exp
(
NαΦ−α◦M ′

)]}
≤ 2xN

[
exp(α)− 1

] d(1 + δ)
β − xN [exp(α)− 1]

+ 2N
[
exp(α)− 1

]
ϕ(x).
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Thus with P probability at least 1− η,

B(πexp(−λ1r), β, γ) ≤ −(γ − λ1)Nγ sinh( γN ) d
β2

(1− δ)

+ (γ − λ1)
{
N
γ sinh( γN ) (1+δ)d

β1

+ 2xN
γ sinh( γ

2N )2(1 + δ)
[
d
β1

+ d
β2

]
+ 4N

γ sinh( γ
2N )2ϕ(x) +

log( 7
η )

γ

+
4xN sinh( γ

2N )2 (1+δ)d
β1−2xN sinh( γ

2N
)2

+ 4N sinh( γ
2N )2ϕ(x) + log( 7

η )
Nλ1
β1

sinh( γN )− γ

+
4xN sinh( γ

2N )2 (1+δ)d
β2−2xN sinh( γ

2N
)2

+ 4N sinh( γ
2N )2ϕ(x) + log( 7

η )

γ − Nλ2
β2

sinh( γN )

}
+

2λ1

γ

{
4xN sinh( γ

2N )2 (1+δ)d
Nλ1
γ sinh(

γ
N )−2xN sinh( γ

2N
)2

+ 4N sinh( γ
2N )2ϕ(x) + log( 7

η )
}

+
(

1− λ1

γ

){
2d(1 + δ)

(
λ1 sinh

( γ
N

)
xγ

[
exp

(
log[cosh(

γ
N

)]

1−λ1
γ

)
−1

] − 1

)−1

+ 2N
[
exp
(

log[cosh( γ
N

)]

1−λ1
γ

)
− 1
]
ϕ(x)

}
+
(

1− λ1
γ

)
log( 7

η )− log
[
ν({β})ν({γ})ε

]
+

1− λ1
γ

Nλ2
βγ tanh( γN )− 1

{
2λ2

γ

{
4xN sinh( γ

2N )2 (1+δ)d
Nλ2
γ sinh(

γ
N )−2xN sinh( γ

2N
)2

+ 4N sinh( γ
2N )2ϕ(x) + log( 7

η )
}

+
(

1− λ2

γ

)[
2d(1 + δ)

(
λ2 sinh

( γ
N

)
xγ

[
exp

(
log[cosh(

γ
N

)]

1−λ2
γ

)
−1

] − 1

)−1

+ 2N
[
exp
(

log[cosh( γ
N

)]

1−λ2
γ

)
− 1
]
ϕ(x)

]

+
(

1− λ2
γ

)
log( 7

η )− log
[
ν(β)ν(γ)ε

]}
.

Now let us choose for simplicity β2 = 2λ2 = 4β, β1 = λ1/2 = γ/4, and let
us introduce the notation

C1 =
N

γ
sinh(

γ

N
),
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C2 =
N

γ
tanh(

γ

N
),

C3 =
N2

γ2

[
exp(

γ2

N2
)− 1

]
and C4 =

2N2(1− 2β
γ )

γ2

[
exp
( γ2

2N2(1− 2β
γ )

)
− 1
]
,

to obtain

B(πexp(−λ1r), β, γ) ≤ −C1γ

8β
(1− δ)d

+
C1γ

2

{
4(1+δ)d

γ + x γ
2N (1 + δ)

[
4d
γ + d

4β

]
+ γ

Nϕ(x)
}

+ 1
2 log

(
7
η

)
+

1
2C1 − 1

[
(1 + δ)d

(
N

2xC1γ
− 1
)−1

+ C1
γ2

2N
ϕ(x) + 1

2 log( 7
η )
]

+
1

2− C1

[
2(1 + δ)d

(
8Nβ
xC1γ2 − 1

)−1
+ C1

γ2

N
ϕ(x) + log( 7

η )
]

+
2xγ(1 + δ)d
N − xγ

+ C1
γ2

N ϕ(x) + log( 7
η )

+ d(1 + δ)
xγ

N

(
C1

2C3
− xγ

N

)−1

+
γ2

N
C3ϕ(x) +

log( 7
η )

2
− log

[
ν(β)ν(γ)ε

]
+
(

4C2 − 2
)−1

{
4β
γ

{
x
γ2

N
C1(1 + δ)d

(
2βC1 − xC1

γ2

2N

)−1

+ γ2

N ϕ(x) + log( 7
η )
}

+
(

1− 2β
γ

){
2d(1 + δ)

xγ

N

[
4βC1

γC4

(
1− 2β

γ

)
− xγ

N

]−1

+
γ2

N(1− 2β
γ )
C4ϕ(x)

}

+
(

1− 2β
γ

)
log( 7

η )− log
[
ν(β)ν(γ)ε

]}
.

This simplifies to

B(πexp(−λ1r), β, γ) ≤ −C1

8
(1− δ)dγ

β

+ 2C1(1 + δ)d+ log( 7
η )
[
2 + 3C1

(4C1−2)(2−C1) +
1 + 2β

γ

4C2 − 2

]
−
(
1 + 1

4C2−2

)
log
[
ν(β)ν(γ)ε

]
+

(1 + δ)dxγ
N

{
C1 + 1

2C1−1

(
1

2C1
− γx

N

)−1
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+ 2
(

1− γx
N

)−1
+
(
C1
2C3
− γx

N

)−1
+ 4C1β

γ(4C2−2)

}
+

(1 + δ)dxγ2

Nβ

{
C1
16 + 2

2−C1

(
8
C1
− xγ2

Nβ

)−1

+
(

1− 2β
γ

)
1

2C2−1

[
4C1
C4

(
1− 2β

γ

)
− γ2x

βN

]−1
}

+
γ2

N
ϕ(x)

{
3C1

2 + C1
4C1−2 + C1

2−C1
+ C3 + 4β

γ(4C2−2) + C4
4C2−2

}
.

This shows that there exist universal positive real constants A1, A2, B1,
B2, B3, and B4 such that as soon as γmax{x,1}

N ≤ A1
β
γ ≤ A2,

B(πexp(−λ1r), β, γ) ≤ −B1(1− δ)dγ
β

+B2(1 + δ)d

−B3 log
[
ν(β)ν(γ)ε η

]
+B4

γ2

N
ϕ(x).

Thus πexp(−λ1r)(R) ≤ πexp(−βR)(R) ≤ infΘR+ (1+δ)d
β as soon as

β

γ
≤ B1

B2
(1+δ)
(1−δ) + B4

γ2

N
ϕ(x)−B3 log[ν(β)ν(γ)εη]

(1−δ)d

.

Choosing some real ratio α > 1, we can now make the above result uniform
for any

β, γ ∈ Λα
def=
{
αk; k ∈ N, 0 ≤ k < log(N)

log(α)

}
, (2.10)

by substituting ν(β) and ν(γ) with log(α)
log(αN) and − log(η) with − log(η) +

2 log
[

log(αN)
log(α)

]
.

Taking η = ε for simplicity, we can summarize our result in

Theorem 2.1.15. There exist positive real universal constants A, B1, B2,
B3 and B4 such that for any positive real constants α > 1, d and δ, for
any prior distribution π ∈M1

+(Θ), with P probability at least 1− ε, for any
β, γ ∈ Λα (where Λα is defined by equation (2.10) above) such that

sup
β′∈R,β′≥β

∣∣∣∣β′d [πexp(−β′R)(R)− inf
Θ
R
]
− 1
∣∣∣∣ ≤ δ

and such that also for some positive real parameter x

γmax{x, 1}
N

≤ Aβ

γ
and

β

γ
≤ B1

B2
(1+δ)
(1−δ) +

B4
γ2

N
ϕ(x)−2B3 log(ε)+4B3 log

[
log(N)
log(α)

]
(1−δ)d

,
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the bound B(πexp(− γ
2
r), β, γ) given by Theorem 2.1.3 on page 72 in the case

where we have chosen ν to be the uniform probability measure on Λα, satisfies
B(πexp(− γ

2
r), β, γ) ≤ 0, proving that β̂(πexp(− γ

2
r)) ≥ β and therefore that

πexp(−γ r
2

)(R) ≤ πexp(−βR)(R) ≤ inf
Θ
R+

(1 + δ)d
β

.

What is important in this result is that we do not only bound πexp(− γ
2
r)(R),

but also B(πexp(− γ
2
r), β, γ), and that we do it uniformly on a grid of values

of β and γ, showing that we can indeed set the constants β and γ adaptively
using the empirical bound B(πexp(− γ

2
r), β, γ).

Let us see what we get under the margin assumption (1.24, page 56).
When κ = 1, we have ϕ(c−1) ≤ 0, leading to

Corollary 2.1.16. Assuming that the margin assumption (1.24, page 56)
is satisfied for κ = 1, that R : Θ→ (0, 1) is independent of N (which is the
case for instance when P = P⊗N ), and is such that

lim
β′→+∞

β′
[
πexp(−β′R)(R)− inf

Θ
R
]

= d,

there are universal positive real constants B5 and B6 and N1 ∈ N such that
for any N ≥ N1, with P probability at least 1− ε

πexp(−bγ r
2

)(R) ≤ inf
Θ
R+

B5d

cN

[
1 +

B6

d
log
(

log(N)
ε

)]2

,

where γ̂ ∈ arg maxγ∈Λ2 max
{
β ∈ Λ2;B(πexp(−γ r

2
), β, γ) ≤ 0

}
, where Λ2 is

defined by equation (2.10, page 85), and B is the bound of Theorem 2.1.3
(page 72).

When κ > 1, ϕ(x) ≤ (1− κ−1)
(
κcx
)− 1

κ−1 , and we can choose γ and x such
that γ2

N ϕ(x) ' d to prove

Corollary 2.1.17. Assuming that the margin assumption (1.24, page 56)
is satisfied for some exponent κ > 1, that R : Θ → (0, 1) is independent of
N (which is for instance the case when P = P⊗N ), and is such that

lim
β′→+∞

β′
[
πexp(−β′R)(R)− inf

Θ
R
]

= d,

there are universal positive constants B7 and B8 and N1 ∈ N such that for
any N ≥ N1, with P probability at least 1− ε,

πexp(−bγ r
2

)(R) ≤ inf
Θ
R+B7c

− 1
2κ−1

[
1 +

B8

d
log
(

log(N)
ε

)] 2κ
2κ−1

(
d

N

) κ
2κ−1

,

where γ̂ ∈ arg maxγ∈Λ2 max
{
β ∈ Λ2;B(πexp(−γ r

2
), β, γ) ≤ 0

}
, Λ2 being de-

fined by equation (2.10, page 85) and B by Theorem 2.1.3 (page 72).
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We find the same rate of convergence as in Corollary 1.4.7 (page 57), but this
time, we were able to provide an empirical posterior distribution πexp(−bγ r

2
)

which achieves this rate adaptively in all the parameters (meaning in partic-
ular that we do not need to know d, c or κ). Moreover, as already mentioned,
the power of N in this rate of convergence is known to be optimal in the
worst case (see Mammen et al. (1999); Tsybakov (2004); Tsybakov et al.
(2005), and more specifically in Audibert (2004b) — downloadable from its
author’s web page — Theorem 3.3, page 132).

2.1.5. Estimating the divergence of a posterior with respect to
a Gibbs prior. Another interesting question is to estimate K

[
ρ, πexp(−βR)

]
using relative deviation inequalities. We follow here an idea to be found first
in (Audibert, 2004b, page 93). Indeed, combining equation (2.3, page 70)
with equation (2.1, page 69), we see that for any positive real parameters
β and λ, with P probability at least 1 − ε, for any posterior distribution
ρ : Ω→M1

+(Θ),

K
[
ρ, πexp(−βR)

]
≤ β

N tanh( γN )

{
γ
[
ρ(r)− πexp(−βR)(r)

]
+N log

[
cosh( γN )

]
ρ⊗ πexp(−βR)(m

′)

+ K
[
ρ, πexp(−βR)

]
− log(ε)

}
+ K(ρ, π)−K

[
πexp(−βR), π

]
≤ K

[
ρ, π

exp[− βγ

N tanh(
γ
N

)
r]

]
+

β

N tanh( γN )

{
K
[
ρ, πexp(−βR)

]
− log(ε)

}
+ log

[
π

exp[− βγ

N tanh(
γ
N

)
r]

{
exp
[ β

tanh( γN )
log
[
cosh( γN )

]
ρ(m′)

]}]
.

We thus obtain

Theorem 2.1.18. For any positive real constants β and γ such that β <
N tanh( γN ), with P probability at least 1 − ε, for any posterior distribution
ρ : Ω→M1

+(Θ),

K
[
ρ, πexp(−βR)

]
≤
(

1− β

N
tanh

( γ
N

)−1
)−1

×

{
K
[
ρ, π

exp[−βγ
N

tanh( γ
N

)−1r]

]
− β

N tanh( γN )
log(ε)

+ log
{
π

exp[−βγ
N

tanh( γ
N

)−1r]

[
exp
{
β tanh( γN )−1 log[cosh( γN )]ρ(m′)

}]}}
.

This theorem provides another way of measuring over-fitting, since it gives
an upper bound for K

[
π

exp[−βγ
N

tanh( γ
N

)−1r]
, πexp(−βR)

]
. It may be used in
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combination with Theorem 1.2.6 (page 25) as an alternative to Theorem
1.3.7 (page 35). It will also be used in the next section.

An alternative parametrization of the same result providing a simpler
right-hand side is also useful:

Corollary 2.1.19. For any positive real constants β and γ such that
β < γ, with P probability at least 1 − ε, for any posterior distribution ρ :
Ω→M1

+(Θ),

K
[
ρ, π

exp[−N β
γ

tanh( γ
N

)R]

]
≤
(

1− β

γ

)−1
{

K
[
ρ, πexp(−βr)

]
− β

γ
log(ε)

+ log
{
πexp(−βr)

[
exp
{
N β

γ log
[
cosh( γN )

]
ρ(m′)

}]}}
.

2.2. Playing with two posterior and two local prior
distributions

2.2.1. Comparing two posterior distributions. Estimating the ef-
fective temperature of an estimator provides an efficient way to tune pa-
rameters in a model with parametric behaviour. On the other hand, it will
not be fitted to choose between different models, especially when they are
nested, because as we already saw in the case when Θ is a union of nested
models, the prior distribution πexp(−βR) does not provide an efficient local-
ization of the parameter in this case, in the sense that πexp(−βR)(R) does
not go down to infΘR at the desired rate when β goes to +∞, requiring a
resort to partial localization.

Once some estimator (in the form of a posterior distribution) has been
chosen in each sub-model, these estimators can be compared between them-
selves with the help of the relative bounds that we will establish in this
section. It is also possible to choose several estimators in each sub-model, to
tune parameters in the same time (like the inverse temperature parameter
if we decide to use Gibbs posterior distributions in each sub-model).

From equation (2.2 page 70) (slightly modified by replacing π ⊗ π with
π1 ⊗ π2), we easily obtain

Theorem 2.2.1. For any positive real constant λ, for any prior distribu-
tions π1, π2 ∈ M1

+(Θ), with P probability at least 1 − ε, for any posterior
distributions ρ1 and ρ2 : Ω→M1

+(Θ),

−N log
{

1− tanh
(
λ
N

)[
ρ2(R)− ρ1(R)

]}
≤ λ

[
ρ2(r)− ρ1(r)

]
+N log

[
cosh

(
λ
N

)]
ρ1 ⊗ ρ2(m′)

+ K
(
ρ1, π

1
)

+ K
(
ρ2, π

2
)
− log(ε).
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This is where the entropy bound of the previous section enters into the
game, providing a localized version of Theorem 2.2.1 (page 88). We will use
the notation

Ξa(q) = tanh(a)−1
[
1− exp(−aq)

]
≤ a

tanh(a)
q, a, q ∈ R. (2.11)

Theorem 2.2.2. For any ε ∈)0, 1(, any sequence of prior distributions
(πi)i∈N ∈M1

+(Θ)N, any probability distribution µ on N, any atomic proba-
bility distribution ν on R+, with P probability at least 1−ε, for any posterior
distributions ρ1, ρ2 : Ω→M1

+(Θ),

ρ2(R)− ρ1(R) ≤ B(ρ1, ρ2), where

B(ρ1, ρ2) = inf
λ,β1<γ1,β2<γ2∈R+,i,j∈N

Ξ λ
N

{[
ρ2(r)− ρ1(r)

]
+ N

λ log
[
cosh( λN )

]
ρ1 ⊗ ρ2(m′)

+
1

λ
(

1− β1

γ1

){K
[
ρ1, π

i
exp(−β1r)

]
+ log

{
πiexp(−β1r)

[
exp
{
β1

N
γ1

log
[
cosh(γ1N )

]
ρ1(m′)

}]}
− β1

γ1
log
[
ν(γ1)

]}
+

1

λ
(

1− β2

γ2

){K
[
ρ2, π

j
exp(−β2r)

]
+ log

{
πjexp(−β2r)

[
exp
{
β2

N
γ2

log
[
cosh(γ2N )

]
ρ2(m′)

}]}
− β2

γ2
log
[
ν(γ2)

]}
−
[( γ1

β1
− 1

)−1 +
( γ2
β2
− 1

)−1 + 1
] log

[
3−1ν(β1)ν(β2)ν(λ)µ(i)µ(j)ε

]
λ

}
.

The sequence of prior distributions (πi)i∈N should be understood to be typ-
ically supported by subsets of Θ corresponding to parametric sub-models,
that is sub-models for which it is reasonable to expect that

lim
β→+∞

β
[
πiexp(−βR)(R)− ess inf

πi
R
]

exists and is positive and finite. As there is no reason why the bound
B(ρ1, ρ2) provided by the previous theorem should be sub-additive (in the
sense that B(ρ1, ρ3) ≤ B(ρ1, ρ2)+B(ρ2, ρ3)), it is adequate to consider some
workable subset P of posterior distributions (for instance the distributions of
the form πiexp(−βr), i ∈ N, β ∈ R+), and to define the sub-additive chained
bound



90 Chapter 2. Comparing posterior distributions to Gibbs priors

B̃(ρ, ρ′) = inf

{
n−1∑
k=0

B(ρk, ρk+1); n ∈ N∗, (ρk)nk=0 ∈ Pn+1,

ρ0 = ρ, ρn = ρ′

}
, ρ, ρ′ ∈ P. (2.12)

Proposition 2.2.3. With P probability at least 1 − ε, for any posterior
distributions ρ1, ρ2 ∈ P, ρ2(R) − ρ1(R) ≤ B̃(ρ1, ρ2). Moreover for any
posterior distribution ρ1 ∈ P, any posterior distribution ρ2 ∈ P such that
B̃(ρ1, ρ2) = infρ3∈P B̃(ρ1, ρ3) is unimprovable with the help of B̃ in P in the
sense that infρ3∈P B̃(ρ2, ρ3) ≥ 0.

Proof. The first assertion is a direct consequence of the previous theorem,
so only the second assertion requires a proof: for any ρ3 ∈ P, we deduce
from the optimality of ρ2 and the sub-additivity of B̃ that

B̃(ρ1, ρ2) ≤ B̃(ρ1, ρ3) ≤ B̃(ρ1, ρ2) + B̃(ρ2, ρ3).

�
This proposition provides a way to improve a posterior distribution ρ1 ∈ P

by choosing ρ2 ∈ arg minρ∈P B̃(ρ1, ρ) whenever B̃(ρ1, ρ2) < 0. This improve-
ment is proved by Proposition 2.2.3 to be one-step: the obtained improved
posterior ρ2 cannot be improved again using the same technique.

Let us give some examples of possible starting distributions ρ1 for this
improvement scheme: ρ1 may be chosen as the best posterior Gibbs dis-
tribution according to Proposition 2.1.5 (page 75). More precisely, we may
build from the prior distributions πi, i ∈ N, a global prior π =

∑
i∈N µ(i)πi.

We can then define the estimator of the inverse effective temperature as in
Proposition 2.1.5 (page 75) and choose ρ1 ∈ arg minρ∈P β̂(ρ), where P is as
suggested above the set of posterior distributions

P =
{
πiexp(−βr); i ∈ N, β ∈ R+

}
.

This starting point ρ1 should already be pretty good, at least in an asymp-
totic perspective, the only gain in the rate of convergence to be expected
bearing on spurious log(N) factors.

2.2.2. Elaborate uses of relative bounds between posteriors.
More elaborate uses of relative bounds are described in the third section
of the second chapter of Audibert (2004b), where an algorithm is proposed
and analysed, which allows one to use relative bounds between two posterior
distributions as a stand-alone estimation tool.

Let us give here some alternative way to address this issue. We will assume
for simplicity and without great loss of generality that the working set of
posterior distributions P is finite (so that among other things any ordering
of it has a first element).



2.2. Playing with two posterior and two local prior distributions 91

It is natural to define the estimated complexity of any given posterior
distribution ρ ∈ P in our working set as the bound for infi∈NK(ρ, πi) used
in Theorem 2.2.1 (page 88). This leads to set (given some confidence level
1− ε)

C(ρ) = inf
β<γ∈R+,i∈N

(
1− β

γ

)−1{
K
[
ρ, πiexp(−βr)

]
+ log

{
πiexp(−βr)

[
exp
{
βNγ log

[
cosh( γN )

]
ρ(m′)

}]}
− β

γ
log
[
3−1ν(γ)ν(β)µ(i)ε

]}
.

Let us moreover call γ(ρ), β(ρ) and i(ρ) the values achieving this infimum,
or nearly achieving it, which requires a slight change of the definition of
C(ρ) to take this modification into account. For the sake of simplicity, we
can assume without substantial loss of generality that the supports of ν and
µ are large but finite, and thus that the minimum is reached.

To understand how this notion of complexity comes into play, it may be
interesting to keep in mind that for any posterior distributions ρ and ρ′ we
can write the bound in Theorem 2.2.2 (page 89) as

B(ρ, ρ′) = inf
λ∈R+

Ξ λ
N

[
ρ′(r)− ρ(r) + Sλ(ρ, ρ′)

]
, (2.13)

where

Sλ(ρ, ρ′) = Sλ(ρ′, ρ) ≤ N

λ
log
[
cosh( λN )

]
ρ⊗ρ′(m′)+C(ρ) + C(ρ′)

λ
− log(3−1ε)

λ

−
log
{
ν
[
β(ρ)

]
µ
[
i(ρ)

]}
λ
(
1− β(ρ′)

γ(ρ′)

) −
log
{
ν
[
β(ρ′)

]
µ
[
i(ρ′)

]}
λ
(
1− β(ρ)

γ(ρ)

)
−
[( γ(ρ)

β(ρ) − 1
)−1 +

( γ(ρ′)
β(ρ′) − 1

)−1 + 1
] log

[
ν(λ)

]
λ

.

(Let us recall that the function Ξ is defined by equation (2.11, page 89).)
Thus for any ρ, ρ′ such that B(ρ′, ρ) > 0, we can deduce from the mono-
tonicity of Ξ λ

N
that

ρ′(r)− ρ(r) ≤ inf
λ∈R+

Sλ(ρ, ρ′),

proving that the left-hand side is small, and consequently that B(ρ, ρ′) and
its chained counterpart defined by equation (2.12, page 90) are small:

B̃(ρ, ρ′) ≤ B(ρ, ρ′) ≤ inf
λ∈R+

Ξ λ
N

[
2Sλ(ρ, ρ′)

]
.

It is also worth noticing that B(ρ, ρ′) and B̃(ρ, ρ′) are upper bounded in
terms of variance and complexity only.
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The presence of the ratios γ(ρ)
β(ρ) should not be obnoxious, since their values

should be automatically tamed by the fact that β(ρ) and γ(ρ) should make
the estimate of the complexity of ρ optimal.

As an alternative, it is possible to restrict to set of parameter values β
and γ such that, for some fixed constant ζ > 1, the ratio γ

β is bounded away
from 1 by the inequality γ

β ≥ ζ. This leads to an alternative definition of
C(ρ):

C(ρ) = inf
γ≥ζβ∈R+,i∈N

(
1− β

γ

)−1{
K
[
ρ, πiexp(−βr)

]
+ log

{
πiexp(−βr)

[
exp
{
βNγ log

[
cosh( γN )

]
ρ(m′)

}]}
− β

γ
log
[
3−1ν(γ)ν(β)µ(i)ε

]}
−

log
[
ν(β)µ(i)

]
(1− ζ−1)

− log(3−1ε)
2

.

We can even push simplification a step further, postponing the optimization
of the ratio γ

β , and setting it to the fixed value ζ. This leads us to adopt the
definition

C(ρ) = inf
β∈R+,i∈N

(
1− ζ−1

)−1
{

K
[
ρ, πiexp(−βr)

]
+ log

{
πiexp(−βr)

[
exp
{
N
ζ log

[
cosh( ζβN )

]
ρ(m′)

}]}}
− ζ + 1
ζ − 1

{
log
[
ν(β)µ(i)

]
+ 2−1 log(3−1ε)

}
. (2.14)

With either of these modified definitions of the complexity C(ρ), we get
the upper bound

Sλ(ρ, ρ′) ≤ S̃λ(ρ, ρ′) def=
N

λ
log
[
cosh( λN )

]
ρ⊗ ρ′(m′)

+
1
λ

{
C(ρ) + C(ρ′)− ζ + 1

ζ − 1
log
[
ν(λ)

]}
. (2.15)

With these definitions, we have for any posterior distributions ρ and ρ′

B(ρ, ρ′) ≤ inf
λ∈R+

Ξ λ
N

{
ρ′(r)− ρ(r) + S̃λ(ρ, ρ′)

}
.

Consequently in the case when B(ρ′, ρ) > 0, we get

B̃(ρ, ρ′) ≤ B(ρ, ρ′) ≤ inf
λ∈R+

Ξ λ
N

[
2S̃λ(ρ, ρ′)

]
.

To select some nearly optimal posterior distribution in P, it is appropriate
to order the posterior distributions of P according to increasing values of
their complexity C(ρ) and consider some indexation P = {ρ1, . . . , ρM}, where
C(ρk) ≤ C(ρk+1), 1 ≤ k < M .
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Let us now consider for each ρk ∈ P the first posterior distribution in P

which cannot be proved to be worse than ρk according to the bound B̃:

t(k) = min
{
j ∈ {1, . . .M} : B̃(ρj , ρk) > 0

}
. (2.16)

In this definition, which uses the chained bound defined by equation (2.12,
page 90), it is appropriate to assume by convention that B̃(ρ, ρ) = 0, for any
posterior distribution ρ. Let us now define our estimated best ρ ∈ P as ρbk,
where

k̂ = min(arg max t). (2.17)

Thus we take the posterior with smallest complexity which can be proved
to be better than the largest starting interval of P in terms of estimated
relative classification error.

The following theorem is a simple consequence of the chosen optimisation
scheme. It is valid for any arbitrary choice of the complexity function ρ 7→
C(ρ).

Theorem 2.2.4. Let us put t̂ = t(k̂), where t is defined by equation (2.16)
and k̂ is defined by equation (2.17). With P probability at least 1− ε,

ρbk(R) ≤ ρj(R) +


0, 1 ≤ j < t̂,

B̃(ρj , ρt(j)), t̂ ≤ j < k̂,

B̃(ρj , ρbt) + B̃(ρbt, ρbk), j ∈ (arg max t),
B̃(ρj , ρbk), j ∈

{
k̂ + 1, . . . ,M

}
\ (arg max t),

where the chained bound B̃ is defined from the bound of Theorem 2.2.2 (page
89) by equation (2.12, page 90). In the mean time, for any j such that
t̂ ≤ j < k̂, t(j) < t̂ = max t, because j 6∈ (arg max t). Thus

ρbk(R) ≤ ρt(j)(R) ≤ ρj(R) + inf
λ∈R+

Ξ λ
N

[
2Sλ(ρj , ρt(j))

]
while ρt(j)(r) ≤ ρj(r) + inf

λ∈R+

Sλ(ρj , ρt(j)),

where the function Ξ is defined by equation (2.11, page 89) and Sλ is defined
by equation (2.13, page 91). For any j ∈ (arg max t), (including notably k̂),

B(ρbt, ρj) ≥ B̃(ρbt, ρj) > 0,

B(ρj , ρbt) ≥ B̃(ρj , ρbt) > 0,

so in this case

ρbk(R) ≤ ρj(R) + inf
λ∈R+

Ξ λ
N

[
Sλ(ρj , ρbt) + Sλ(ρbt, ρbk) + Sλ(ρj , ρbk)

]
,

while ρbt(r) ≤ ρj(r) + inf
λ∈R+

Sλ(ρj , ρbt),
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ρbk(r) ≤ ρbt(r) + inf
λ∈R+

Sλ(ρbt, ρbk),
and ρbt(R) ≤ ρj(R) + inf

λ∈R+

Ξ λ
N

[
2Sλ(ρj , ρbt)].

Finally in the case when j ∈
{
k̂ + 1, . . . ,M

}
\ (arg max t), due to the fact

that in particular j 6∈ (arg max t),

B(ρbk, ρj) ≥ B̃(ρbk, ρj) > 0.

Thus in this last case

ρbk(R) ≤ ρj(R) + inf
λ∈R+

Ξ λ
N

[
2Sλ(ρj , ρbk)],

while ρbk(r) ≤ ρj(r) + inf
λ∈R+

Sλ(ρj , ρbk).
Thus for any j = 1, . . . ,M , ρbk(R) − ρj(R) is bounded from above by an

empirical quantity involving only variance and entropy terms of posterior
distributions ρ` such that ` ≤ j, and therefore such that C(ρ`) ≤ C(ρj).
Moreover, these distributions ρ` are such that ρ`(r)−ρj(r) and ρ`(R)−ρj(R)
have an empirical upper bound of the same order as the bound stated for
ρbk(R)− ρj(R) — namely the bound for ρ`(r)− ρj(r) is in all circumstances
not greater than Ξ−1

λ
N

applied to the bound stated for ρbk(R)− ρj(R), whereas

the bound for ρ`(R)−ρj(R) is always smaller than two times the bound stated
for ρbk(R) − ρj(R). This shows that variance terms are between posterior
distributions whose empirical as well as expected error rates cannot be much
larger than those of ρj.

Let us remark that the estimation scheme described in this theorem is very
general, the same method can be used as soon as some confidence interval
for the relative expected risks

−B(ρ2, ρ1) ≤ ρ2(R)− ρ1(R) ≤ B(ρ1, ρ2) with P probability at least 1− ε,

is available. The definition of the complexity is arbitrary, and could in an
abstract context be chosen as

C(ρ1) = inf
ρ2 6=ρ1

B(ρ1, ρ2) +B(ρ2, ρ1).

Proof. The case when 1 ≤ j < t̂ is straightforward from the definitions:
when j < t̂, B̃(ρj , ρbk) ≤ 0 and therefore ρbk(R) ≤ ρj(R).

In the second case, that is when t̂ ≤ j < k̂, j cannot be in arg max t,
because of the special choice of k̂ in arg max t. Thus t(j) < t̂ and we deduce
from the first case that

ρbk(R) ≤ ρt(j)(R) ≤ ρj(R) + B̃(ρj , ρt(j)).
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Moreover, we see from the defintion of t that B̃(ρt(j), ρj) > 0, implying

ρt(j)(r) ≤ ρj(r) + inf
λ∈R+

Sλ(ρj , ρt(j)),

and therefore that

ρbk(R) ≤ ρj(R) + inf
λ

Ξ λ
N

[
2Sλ(ρj , ρt(j))

]
.

In the third case j belongs to arg max t. In this case, we are not sure that
B̃(ρbk, ρj) > 0, and it is appropriate to involve t̂, which is the index of the first
posterior distribution which cannot be improved by ρbk, implying notably
that B̃(ρbt, ρk) > 0 for any k ∈ arg max t. On the other hand, ρbt cannot
either improve any posterior distribution ρk with k ∈ (arg max t), because
this would imply for any ` < t̂ that B̃(ρ`, ρbt) ≤ B̃(ρ`, ρk) + B̃(ρk, ρbt) ≤ 0,
and therefore that t(t̂) ≥ t̂ + 1, in contradiction of the fact that t̂ = max t.
Thus B̃(ρk, ρbt) > 0, and these two remarks imply that

ρbt(r) ≤ ρj(r) + inf
λ∈R+

Sλ(ρj , ρbt),
ρbk(r) ≤ ρbt(r) + inf

λ∈R+

Sλ(ρbt, ρbk)
≤ ρj(r) + inf

λ∈R+

Sλ(ρj , ρbt) + inf
λ∈R+

Sλ(ρbt, ρbk),
and consequently also that

ρbk(R) ≤ ρj(R) + B̃(ρj , ρbk)
≤ ρj(R) + inf

λ∈R+

Ξ λ
N

[
Sλ(ρj , ρbt) + Sλ(ρbt, ρbk) + Sλ(ρj , ρbk)

]
and that

ρbt(R) ≤ ρj(R) + inf
λ∈R+

Ξ λ
N

[
2Sλ(ρj , ρbt)] ≤ ρj(R) + 2 inf

λ∈R+

2Ξ λ
N

[
Sλ(ρj , ρbt)],

the last inequality being due to the fact that Ξ λ
N

is a concave function. Let us

notice that it may be the case that k̂ < t̂, but that only the case when j ≥ t̂
is to be considered, since otherwise we already know that ρbk(R) ≤ ρj(R).

In the fourth case, j is greater than k̂, and the complexity of ρj is
larger than the complexity of ρbk. Moreover, j is not in arg max t, and thus
B̃(ρbk, ρj) > 0, because otherwise, the sub-additivity of B̃ would imply that
B̃(ρ`, ρj) ≤ 0 for any ` ≤ t̂ and therefore that t(j) ≥ t̂ = max t. Therefore

ρbk(r) ≤ ρj(r) + inf
λ∈R+

Sλ(ρj , ρbk),
and

ρbk(R) ≤ ρj(R) + B̃(ρj , ρbk) ≤ ρj(R) + inf
λ∈R+

Ξ λ
N

[
2Sλ(ρj , ρbk)].

�
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2.2.3. Analysis of relative bounds. Let us start our investigation of
the theoretical properties of the algorithm described in Theorem 2.2.4 (page
93) by computing some non-random upper bounds for B(ρ, ρ′), the bound of
Theorem 2.2.2 (page 89), and C(ρ), the complexity factor defined by equation
(2.14, page 92), for any ρ, ρ′ ∈ P.

This analysis will be done in the case when

P =
{
πiexp(−βr) : ν(β) > 0, µ(i) > 0

}
,

in which it will be possible to get some control on the randomness of any
ρ ∈ P, in addition to controlling the other random expressions appearing
in the definition of B(ρ, ρ′), ρ, ρ′ ∈ P. We will also use a simpler choice of
complexity function, removing from equation (2.14 page 92) the optimization
in i and β and using instead the definition

C(πiexp(−βr))
def=
(
1− ζ−1

)−1 log
{
πiexp(−βr)

[
exp
{
N
ζ log

[
cosh

( ζβ
N

)]
πiexp(−βr)(m

′)
}]}

+
ζ + 1
ζ − 1

log
[
ν(β)µ(i)

]
. (2.18)

With this definition,

Sλ(πiexp(−βr), π
j
exp(−β′r)) ≤

N

λ
log
[
cosh( λN )

]
πiexp(−βr) ⊗ π

j
exp(−β′r)(m

′)

+
C
[
πiexp(−βr)

]
+ C

[
πjexp(−β′r)

]
λ

+
(ζ + 1)

(ζ − 1)λ
log
[
3−1ν(λ)ε

]
,

where Sλ is defined by equation (2.13, page 91), so that

B
[
πiexp(−βr), π

j
exp(−β′r)

]
= inf

λ∈R+

Ξ λ
N

{
πjexp(−β′r)(r)− π

i
exp(−βr)(r)

+ Sλ
[
πiexp(−βr), π

j
exp(−βr)

]}
.

Let us successively bound the various random factors entering into the def-
inition of B

[
πiexp(−βr), π

j
exp(−β′r)

]
. The quantity πjexp(−β′r)(r) − π

i
exp(−βr)(r)

can be bounded using a slight adaptation of Proposition 2.1.11 (page 77).

Proposition 2.2.5. For any positive real constants λ, λ′ and γ, with P
probability at least 1 − η, for any positive real constants β, β′ such that
β < λ γ

N sinh( γN )−1 and β′ > λ′ γN sinh( γN )−1,
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πjexp(−β′r)(r)− π
i
exp(−βr)(r)

≤ πjexp(−λ′R) ⊗ π
i
exp(−λR)

[
Ψ− γ

N
(R′,M ′)

]
+

log
(

3
η

)
γ

+
Cj(λ′, γ) + log( 3

η )
Nβ′

λ′ sinh( γN )− γ
+
Ci(λ, γ) + log( 3

η )

γ − Nβ
λ sinh( γN )

,

where

Ci(λ, γ) def= log
{∫

Θ
exp
[
−γ
∫

Θ

{
Ψ γ
N

[
R′(θ1, θ2),M ′(θ1, θ2)

]
− N

γ sinh( γN )R′(θ1, θ2)
}
πiexp(−λR)(dθ2)

]
πiexp(−λR)(dθ1)

}
≤ log

{
πiexp(−λR)

[
exp
{

2N sinh
( γ

2N

)2
πiexp(−λR)

(
M ′
)}]}

.

As for πiexp(−βr) ⊗ π
j
exp(−β′r)(m

′), we can write with P probability at least
1− η, for any posterior distributions ρ and ρ′ : Ω→M1

+(Θ),

γρ⊗ ρ′(m′) ≤ log
[
πiexp(−λR) ⊗ π

j
exp(−λ′R)

{
exp
[
γΦ− γ

N
(M ′)

]}]
+ K

[
ρ, πiexp(−λR)

]
+ K

[
ρ′, πjexp(−λ′R)

]
− log(η).

We can then replace λ with βNλ sinh( λN ) and use Theorem 2.1.12 (page 79)
to get

Proposition 2.2.6. For any positive real constants γ, λ, λ′, β and β′,
with P probability 1− η,

γρ⊗ ρ′(m′)

≤ log
[
πi

exp[−βN
λ

sinh( λ
N

)R]
⊗ πj

exp[−β′ N
λ′ sinh(λ

′
N

)R]

{
exp
[
γΦ− γ

N
(M ′)

]}]
+

K
[
ρ, πiexp(−βr)

]
1− β

λ

+
Ci
[
βNλ sinh( λN ), λ

]
− log(η3 )

λ
β − 1

+
K
[
ρ′, πjexp(−β′r)

]
1− β′

λ′

+
Cj
[
β′Nλ′ sinh(λ

′

N ), λ′
]
− log(η3 )

λ
β′ − 1

− log(η3 ).

The last random factor in B(ρ, ρ′) that we need to upper bound is

log
{
πiexp(−βr)

[
exp
{
βNγ log

[
cosh( γN )

]
πiexp(−βr)(m

′)
}]}

.

A slight adaptation of Proposition 2.1.13 (page 79) shows that with P prob-
ability at least 1− η,
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log
{
πiexp(−βr)

[
exp
{
βNγ log

[
cosh( γN )

]
πiexp(−βr)(m

′)
}]}

≤ 2β
γ
Ci
[Nβ
γ sinh( γN ), γ

]
+
(
1− β

γ

)
log
{(

πi
exp[−Nβ

γ
sinh( γ

N
)R]

)⊗2
[

exp
(
N log

[
cosh( γN )

]
γ
β − 1

Φ
−

log[cosh(
γ
N

)]
γ
β
−1

◦M ′
)]}
+
(
1 + β

γ

)
log( 2

η ),

where as usual Φ is the function defined by equation (1.1, page 15). This
leads us to define for any i, j ∈ N, any β, β′ ∈ R+,

C(i, β) def=
2

ζ − 1
Ci
[
N
ζ sinh( ζβN ), ζβ

]
+ log

{(
πi

exp[−N
ζ

sinh( ζβ
N

)R]

)⊗2
[

exp
(
N log

[
cosh( ζβN )

]
ζ − 1

Φ
−

log[cosh(
ζβ
N

)]

ζ−1

◦M ′
)]}

− ζ + 1
ζ − 1

{
2 log

[
ν(β)µ(i)

]
+ log

(η
2

)}
. (2.19)

Recall that the definition of Ci(λ, γ) is to be found in Proposition 2.2.5,
page 96. Let us remark that, since

exp
[
NaΦ−a(p)

]
= exp

{
N log

[
1 +

[
exp(a)− 1

]
p
]}

≤ exp
{
N
[
exp(a)− 1

]
p
}
, p ∈ (0, 1), a ∈ R,

we have

C(i, β) ≤ 2
ζ − 1

log
{
πi

exp[−N
ζ

sinh( ζβ
N

)R]

[
exp
{

2N sinh
( ζβ

2N

)2
πi

exp[−N
ζ

sinh( ζβ
N

)R]

(
M ′
)}]}

+ log
{(

πi
exp[−N

ζ
sinh( ζβ

N
)R]

)⊗2
[

exp
{
N
[
exp
{

(ζ − 1)−1 log
[
cosh

( ζβ
N

)]}
− 1
]
M ′
}]}

− ζ + 1
ζ − 1

{
2 log

[
ν(β)µ(i)

]
+ log

(η
2

)}
.

Let us put

Sλ
[
(i, β), (j, β′)

] def=
N

λ
log
[
cosh( λN )

]
inf
γ∈R+

γ−1

{



2.2. Playing with two posterior and two local prior distributions 99

log
[(
πi

exp[−N
ζ

sinh( ζβ
N

)R]
⊗ πj

exp[−N
ζ

sinh( ζβ
′

N
)R]

){
exp
[
γΦ− γ

N
(M ′)

]}]
+
Ci
[
N
ζ sinh( ζβN ), ζβ

]
− log(η3 )

ζ − 1

+
Cj
[
N
ζ sinh( ζβ

′

N ), ζβ′
]
− log(η3 )

ζ − 1
− log(η3 )

}
+

1
λ

[
C(i, β) + C(j, β′)− ζ + 1

ζ − 1
log
[
3−1ν(λ)ε

]]
,

where
η = ν(γ)ν(β)ν(β′)µ(i)µ(j)η.

Let us remark that

Sλ
[
(i, β), (j, β′)

]
≤ inf

γ∈R+

λ

2Nγ
log
[(
πi

exp[−N
ζ

sinh( ζβ
N

)R]
⊗ πj

exp[−N
ζ

sinh( ζβ
′

N
)R]

){
exp
[
N
[
exp
( γ
N

)
− 1
]
M ′
]}]

+
(

λ

2Nγ(ζ − 1)
+

2
λ(ζ − 1)

)
log
{
πi

exp[−N
ζ

sinh( ζβ
N

)R]

[
exp
{

2N sinh
( ζβ

2N

)2
πi

exp[−N
ζ

sinh( ζβ
N

)R]

(
M ′
)}]}

+ λ−1 log
{(

πi
exp[−N

ζ
sinh( ζβ

N
)R]

)⊗2
[

exp
{
N
[
exp
{

(ζ − 1)−1 log
[
cosh

( ζβ
N

)]}
− 1
]
M ′
}]}

+
(

λ

2Nγ(ζ − 1)
+

2
λ(ζ − 1)

)
log
{
πj

exp[−N
ζ

sinh( ζβ
′

N
)R]

[
exp
{

2N sinh
( ζβ′

2N

)2
πj

exp[−N
ζ

sinh( ζβ
′

N
)R]

(
M ′
)}]}

+ λ−1 log
{(

πj
exp[−N

ζ
sinh( ζβ

′
N

)R]

)⊗2
[

exp
{
N
[
exp
{

(ζ − 1)−1 log
[
cosh

( ζβ′
N

)]}
− 1
]
M ′
}]}

− (ζ + 1)λ
2N(ζ − 1)γ

log
[
3−1ν(γ)ν(β)ν(β′)µ(i)µ(j)η

]
− (ζ + 1)

(ζ − 1)λ

(
2 log

[
2−1ν(β)ν(β′)µ(i)µ(j)η

]
+ log

[
3−1ν(λ)ε

])
.

Let us define accordingly
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B
[
(i, β), (j, β′)

] def=

inf
λ

Ξ λ
N

{
inf

α,γ,α′,γ′

[
πjexp(−α′R) ⊗ π

i
exp(−αR)

[
Ψ− λ

N
(R′,M ′)

]
−

log
( eη

3

)
λ

+
Cj(α′, γ′)− log

( eη
3

)
Nβ′

α′ sinh(γ
′

N )− γ′
+
Ci(α, γ)− log

( eη
3

)
γ − Nβ

α sinh( γN )

]

+ Sλ
[
(i, β), (j, β′)

]}
,

where
η̃ = ν(λ)ν(α)ν(γ)ν(β)ν(α′)ν(γ′)ν(β′)µ(i)µ(j)η.

Proposition 2.2.7.

• With P probability at least 1− η, for any β ∈ R+ and i ∈ N,
C(πiexp(−βr)) ≤ C(i, β);

• With P probability at least 1− 3η, for any λ, β, β′ ∈ R+, any i, j ∈ N,
Sλ
[
(i, β), (j, β′)

]
≤ Sλ

[
(i, β), (j, β′)

]
;

• With P probability at least 1 − 4η, for any i, j ∈ N, any β, β′ ∈ R+,
B(πiexp(−βr), π

j
exp(−β′r)) ≤ B

[
(i, β), (j, β′)

]
.

It is also interesting to find a non-random lower bound for C(πiexp(−βr)).
Let us start from the fact that with P probability at least 1− η,

πiexp(−αR) ⊗ π
i
exp(−αR)

[
Φ γ′
N

(M ′)
]
≤ πiexp(−αR) ⊗ π

i
exp(−αR)(m

′)− log(η)
γ′

.

On the other hand, we already proved that with P probability at least 1−η,

0 ≤
(

1− α

N tanh( λN )

)
K
[
ρ, πiexp(−αR)

]
≤ α

N tanh( λN )

{
λ
[
ρ(r)− πiexp(αR)(r)

]
+N log

[
cosh( λN )

]
ρ⊗ πiexp(−αR)(m

′)− log(η)
}

+ K
(
ρ, πi

)
−K

(
πiexp(−αR), π

i
)
.

Thus for any ξ > 0, putting β = αλ
N tanh( λ

N
)
, with P probability at least 1−η,

ξπiexp(−αR) ⊗ π
i
exp(−αR)

[
Φ γ′
N

(M ′)
]

≤ πiexp(−αR)

{
log
[
πiexp(−βr)

{
exp
[
βNλ log

[
cosh( λN )

]
πiexp(−βr)(m

′) + ξm′
]}]}
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−
(
β

λ
+
ξ

γ′

)
log
(
η

2

)
≤ log

{
πiexp(−βr)

[
exp
{
βNλ log

[
cosh( λN )

]
πiexp(−βr)(m

′)
}

× πiexp(−βr)

{
exp
[
βNλ log

[
cosh( λN )

]
πiexp(−βr)(m

′) + ξm′
]}]}

−
(

2
β

λ
+
ξ

γ′

)
log
(
η

2

)
≤ 2 log

{
πiexp(−βr)

[
exp
{[
ξ + βNλ log

[
cosh( λN )

]]
πiexp(−βr)(m

′)
}]}

−
(

2
β

λ
+
ξ

γ′

)
log
(
η

2

)
≤ 2 log

{
πiexp(−βr)

[
exp
{[
ξ + βλ

2N

]
πiexp(−βr)(m

′)
}]}

−
(

2β
λ

+
ξ

γ′

)
log
(
η

2

)
.

Taking ξ = βλ
2N , we get with P probability at least 1− η

βλ

4N

(
πi

exp[−βN
λ

tanh( λ
N

)R]

)⊗2[
Φ γ′
N

(
M ′
)]

≤ log
{
πiexp(−βr)

[
exp
{βλ
N
πiexp(−βr)(m

′)
}]}

−
(

2β
λ

+
βλ

2Nγ′

)
log
(
η

2

)
.

Putting

λ =
N2

γ
log
[
cosh( γN )

]
and Υ(γ) def=

γ tanh
{
N
γ log

[
cosh( γN )

]}
N log

[
cosh( γN )

] ∼
γ→0

1,

this can be rewritten as

βN

4γ
log
[
cosh( γN )

](
πiexp(−βΥ(γ)R)

)⊗2[
Φ γ′
N

(
M ′
)]

≤ log
{
πiexp(−βr)

[
exp
{
βNγ log

[
cosh( γN )

]
πiexp(−βr)(m

′)
}]}

−
(

2βγ
N2 log

[
cosh( γN )

] +
βN log

[
cosh( γN )

]
2γγ′

)
log
(
η

2

)
.

It is now tempting to simplify the picture a little bit by setting γ′ = γ,
leading to
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Proposition 2.2.8. With P probability at least 1 − η, for any i ∈ N, any
β ∈ R+,

C
[
πiexp(−βr)

]
≥ C(i, β)

def=
1

ζ − 1

{
N

4
log
[
cosh( ζβN )

](
πiexp(−βΥ(ζβ)R)

)⊗2[
Φ ζβ

N

(
M ′
)]

+

(
2ζ2β2

N2 log
[
cosh( ζβN )

] +
N log

[
cosh( ζβN )

]
2ζβ

)
log
[
2−1ν(β)µ(i)η

]
− (ζ + 1)

{
log
[
ν(β)µ(i)

]
+ 2−1 log

(
3−1ε

)}}
,

where C
[
πiexp(−βr)

]
is defined by equation (2.18, page 96).

We are now going to analyse Theorem 2.2.4 (page 93). For this, we will
also need an upper bound for Sλ(ρ, ρ′), defined by equation (2.13, page
91), using M ′ and empirical complexities, because of the special relations
between empirical complexities induced by the selection algorithm. To this
purpose, a useful alternative to Proposition 2.2.6 (page 97) is to write, with
P probability at least 1− η,

γρ⊗ ρ′(m′) ≤ γρ⊗ ρ′
[
Φ− γ

N

(
M ′
)]

+ K
[
ρ, πiexp(−λR)

]
+ K

[
ρ′, πjexp(−λ′R)

]
− log(η),

and thus at least with P probability 1− 3η,

γρ⊗ ρ′(m′) ≤ γρ⊗ ρ′
[
Φ− γ

N

(
M ′
)]

+ (1− ζ−1)−1

{
K
[
ρ, πiexp(−βr)

]
+ log

{
πiexp(−βr)

[
exp
{
N
ζ log

[
cosh

( ζβ
N

)]
ρ(m′)

}]}
− ζ−1 log(η)

}
+ (1− ζ−1)−1

{
K
[
ρ, πjexp(−β′r)

]
+ log

{
πjexp(−β′r)

[
exp
{
N
ζ log

[
cosh

( ζβ′
N

)]
ρ(m′)

}]}
− ζ−1 log(η)

}
− log(η).

When ρ = πiexp(−βr) and ρ′ = πjexp(−β′r), we get with P probability at least
1− η, for any β, β′, γ ∈ R+, any i, j ∈ N,

γρ⊗ ρ′(m′) ≤ γρ⊗ ρ′
[
Φ− γ

N

[(
M ′
)]

+ C(ρ) + C(ρ′)− ζ + 1
ζ − 1

[
log
[
3−1ν(γ)η

]]
.
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Proposition 2.2.9. With P probability at least 1−η, for any ρ = πiexp(−βr),

any ρ′ = πjexp(−β′r) ∈ P,

Sλ(ρ, ρ′) ≤ N

λ
log
[
cosh( λN )

]
ρ⊗ ρ′

[
Φ− γ

N

(
M ′
)]

+
1 + N

γ log
[
cosh( λN )

]
λ

[
C(ρ) + C(ρ′)

]
− (ζ + 1)

(ζ − 1)λ

{
log
[
3−1ν(λ)ε

]
+ N

γ log
[
cosh

(
λ
N

)]
log
[
3−1ν(γ)η

]}
.

In order to analyse Theorem 2.2.4 (page 93), we need to index P ={
ρ1, . . . , ρM

}
in order of increasing empirical complexity C(ρ). To deal in

a convenient way with this indexation, we will write C(i, β) as C
[
πiexp(−βr)

]
,

C(i, β) as C
[
πiexp(−βr)

]
, and S

[
(i, β), (j, β′)

]
as S

[
πiexp(−βr), π

j
exp(−β′r)

]
.

With P probability at least 1− ε, when t̂ ≤ j < k̂, as we already saw,

ρbk(R) ≤ ρi(R) ≤ ρj(R) + inf
λ∈R+

Ξ λ
N

[
2Sλ(ρj , ρi)

]
,

where i = t(j) < t̂. Therefore, with P probability at least 1− ε− η,

ρi(R) ≤ ρj(R) + inf
λ∈R+

Ξ λ
N

{
2
N

λ
log
[
cosh

(
λ
N

)]
ρj ⊗ ρi

[
Φ− γ

N

(
M ′
)]

+ 4
1 + N

γ log
[
cosh

(
λ
N

)]
λ

C(ρj)

− (ζ + 1)
(ζ − 1)λ

{
log
[
3−1ν(λ)ε

]
+ N

γ log
[
cosh

(
λ
N

)]
log
[
3−1ν(γ)η

]}}
.

We can now remark that

Ξa(p+ q) ≤ Ξa(p) + qΞ′a(p)q ≤ Ξa(p) + Ξ′a(0)q = Ξa(p) +
a

tanh(a)
q

and that

Φ−a(p+ q) ≤ Φ−a(p) + Φ′−a(0)q = Φ−a(p) +
exp(a)− 1

a
q.

Moreover, assuming as usual without substantial loss of generality that there
exists θ̃ ∈ arg minΘR, we can split M ′(θ, θ′) ≤ M ′(θ, θ̃) + M ′(θ̃, θ′). Let us
then consider the expected margin function defined by

ϕ(y) = sup
θ∈Θ

M ′(θ, θ̃)− yR′(θ, θ̃), y ∈ R+,

and let us write for any y ∈ R+,
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ρj ⊗ ρi
[
Φ− λ

N

(
M ′
)]
≤ ρj ⊗ ρi

{
Φ− γ

N

[
M ′(., θ̃) + yR′(., θ̃) + ϕ(y)

]}
≤ ρj

{
Φ− λ

N

[
M ′(., θ̃) + ϕ(y)

]}
+
Ny
[
exp( γN )− 1

]
γ

[
ρi(R)−R(θ̃)

]
and(

1−
2yN

[
exp( γN )− 1

]
log
[
cosh

(
λ
N

)]
γ tanh

(
λ
N

) )[
ρi(R)−R(θ̃)

]
≤
[
ρj(R)−R(θ̃)

]
+ Ξ λ

N

{
2N
λ

log
[
cosh

(
λ
N

)]
ρj
{

Φ− γ
N

[
M ′(., θ̃) + ϕ(y)

]}
+ 4

1 + N
γ log

[
cosh

(
λ
N

)]
λ

C(ρj)

− 2(ζ + 1)
(ζ − 1)λ

{
log
[
3−1ν(λ)ε

]
+ N

γ log
[
cosh

(
λ
N

)]
log
[
3−1ν(γ)η

]}}
.

With P probability at least 1 − ε − η, for any λ, γ, x, y ∈ R+, any
j ∈

{
t̂, . . . , k̂ − 1

}
,

ρbk(R)−R(θ̃) ≤ ρi(R)−R(θ̃)

≤

(
1−

2yN
[
exp( γN )− 1

]
log
[
cosh

(
λ
N

)]
γ tanh

(
λ
N

) )−1{
(

1 +
2xN

[
exp( γN )− 1

]
log
[
cosh

(
λ
N

)]
γ tanh

(
λ
N

) )[
ρj(R)−R(θ̃)

]
+ Ξ λ

N

{
2N
λ

log
[
cosh

(
λ
N

)]
Φ− γ

N

[
ϕ(x) + ϕ(y)

]
+ 4

1 + N
γ log

[
cosh

(
λ
N

)]
λ

C(ρj)

− 2(ζ + 1)
(ζ − 1)λ

{
log
[
3−1ν(λ)ε

]
+ N

γ log
[
cosh

(
λ
N

)]
log
[
3−1ν(γ)η

]}}}
.

Now we have to get an upper bound for ρj(R). We can write ρj = π`exp(−β′r),
as we assumed that all the posterior distributions in P are of this special
form. Moreover, we already know from Theorem 2.1.8 (page 77) that with
P probability at least 1− η,[

N sinh
(β′
N

)
− β′ζ−1

][
π`exp(−β′r)(R)− π`exp(−β′ζ−1R)(R)

]
≤ C`(β′ζ−1, β′)− log

[
ν(β′)µ(`)η

]
.

This proves that with P probability at least 1− ε− 2η,
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ρbk(R) ≤ R(θ̃)

+
(

1−
2yN

[
exp
( γ
N

)
− 1
]

log
[
cosh

(
λ
N

)]
γ tanh

(
λ
N

) )−1
{

(
1 +

2xN
[
exp
( γ
N

)
− 1
]

log
[
cosh

(
λ
N

)]
γ tanh

(
λ
N

) )

×

(
π`exp(−ζ−1β′R)(R)−R(θ̃) +

C`(ζ−1β′, β′)− log
[
ν(β′)µ(`)η

]
N sinh(β

′

N )− ζ−1β′

)

+ Ξ λ
N

{
2N
λ

log
[
cosh

(
λ
N

)]
Φ− γ

N

[
ϕ(x) + ϕ(y)

]
+ 4

1 + N
γ log

[
cosh

(
λ
N

)]
λ

C(`, β′)

− 2(ζ + 1)
(ζ − 1)λ

{
log
[
3−1ν(λ)ε

]
+ N

γ log
[
cosh

(
λ
N

)]
log
[
3−1ν(γ)η

]}}}
.

The case when j ∈
{
k̂ + 1, . . . ,M

}
\ (arg max t) is dealt with exactly in

the same way, with i = t(j) replaced directly with k̂ itself, leading to the
same inequality.

The case when j ∈ (arg max t) is dealt with bounding first ρbk(R)− R(θ̃)
in terms of ρbt(R) − R(θ̃), and this latter in terms of ρj(R) − R(θ̃). Let us
put

A(λ, γ) =

(
1−

2xN
[
exp
( γ
N

)
− 1
]

log
[
cosh

(
λ
N

)]
γ tanh

(
λ
N

) )
,

B(λ, γ) = 1 +
2yN

[
exp
( γ
N

)
− 1
]

log
[
cosh

(
λ
N

)]
γ tanh

(
λ
N

) ,

D(λ, γ, ρj) = Ξ λ
N

{
2N
λ

log
[
cosh

(
λ
N

)]
Φ− γ

N

[
ϕ(x) + ϕ(y)

]
+4

1 + N
γ log

[
cosh

(
λ
N

)]
λ

C(ρj)

− 2(ζ + 1)
(ζ − 1)λ

{
log
[
3−1ν(λ)ε

]
+
N

γ
log
[
cosh

(
λ
N

)]
log
[
3−1ν(γ)η

]}}
,

(2.20)

where C(ρj) = C(`, β′) is defined, when ρj = π`exp(−β′r), by equation (2.19,
page 98). We obtain, still with P probability 1− ε− 2η,

ρbk(R)−R(θ̃) ≤ B(λ, γ)
A(λ, γ)

[
ρbt(R)−R(θ̃)

]
+
D(λ, γ, ρj)
A(λ, γ)

,

ρbt(R)−R(θ̃) ≤ B(λ, γ)
A(λ, γ)

[
ρj(R)−R(θ̃)

]
+
D(λ, γ, ρj)
A(λ, γ)

.
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The use of the factor D(λ, γ, ρj) in the first of these two inequalities, instead
of D(λ, γ, ρbt), is justified by the fact that C(ρbt) ≤ C(ρj). Combining the two
we get

ρbk(R) ≤ R(θ̃) +
B(λ, γ)2

A(λ, γ)2

[
ρj(R)−R(θ̃)

]
+
[
B(λ, γ)
A(λ, γ)

+ 1
]
D(λ, γ, ρj)
A(λ, γ)

.

Since it is the worst bound of all cases, it holds for any value of j, proving

Theorem 2.2.10. With P probability at least 1− ε− 2η,

ρbk(R) ≤ R(θ̃ ) + inf
i,β,λ,γ,x,y

{
B(λ, γ)2

A(λ, γ)2

[
πiexp(−βr)(R)−R(θ̃)

]
+
[
B(λ, γ)
A(λ, γ)

+ 1
]D(λ, γ, πiexp(−βr))

A(λ, γ)

}

≤ R(θ̃) + inf
i,β,λ,γ,x,y

{
B(λ, γ)2

A(λ, γ)2

(
πiexp(−ζ−1βR)(R)−R(θ̃) +

Ci(ζ−1β, β)− log
[
ν(β)µ(i)η

]
N sinh

( β
N

)
− ζ−1β

)

+
[
B(λ, γ)
A(λ, γ)

+ 1
]D(λ, γ, πiexp(−βr))

A(λ, γ)

}
,

where the notation A(λ, γ), B(λ, γ) and D(λ, γ, ρ) is defined by equation
(2.20 page 105) and where the notation Ci(β, γ) is defined in Proposition
2.2.5 (page 96).

The bound is a little involved, but as we will prove next, it gives the same
rate as Theorem 2.1.15 (page 85) and its corollaries, when we work with a
single model (meaning that the support of µ is reduced to one point) and the
goal is to choose adaptively the temperature of the Gibbs posterior, except
for the appearance of the union bound factor − log

[
ν(β)

]
which can be made

of order log
[
log(N)

]
without spoiling the order of magnitude of the bound.

We will encompass the case when one must choose between possibly sev-
eral parametric models. Let us assume that each πi is supported by some
measurable parameter subset Θi ( meaning that πi(Θi) = 1), let us also
assume that the behaviour of πi is parametric in the sense that there exists
a dimension di ∈ R+ such that

sup
β∈R+

β
[
πiexp(−βR)(R)− inf

Θi
R
]
≤ di. (2.21)

Then

Ci(λ, γ) ≤ log
{
πiexp(−λR)

[
exp
{

2N sinh
( γ

2N

)2
M ′(., θ̃)

}]}
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+ 2N sinh
( γ

2N

)2
πiexp(−λR)

[
M ′(., θ̃)

]
≤ log

{
πiexp(−λR)

[
exp 2xN sinh

( γ
2N

)2[
R−R(θ̃)

]}]}
+ 2xN sinh

( γ
2N

)2
πiexp(−λR)

[
R−R(θ̃)

]
+ 4N sinh

( γ
2N

)2
ϕ(x)

≤ 2xN sinh
( γ

2N

)2
πiexp{−[λ−2xN sinh( γ

2N
)2]R}

[
R−R(θ̃)

]
+ 2xN sinh

( γ
2N

)2
πiexp(−λR)

[
R−R(θ̃)

]
+ 4N sinh

( γ
2N

)2
ϕ(x).

Thus

Ci(λ, γ) ≤ 4N sinh
( γ

2N

)2(
x
[
inf
Θi
R−R(θ̃)

]
+ ϕ(x)

+
xdi
2λ

+
xdi

2λ− 4xN sinh
( γ

2N

)2
)
.

In the same way,

C(i, β) ≤ 8N
ζ−1 sinh

( ζβ
2N

)2[
x
[
inf
Θi
R−R(θ̃)

]
+ ϕ(x)

+
ζxdi

2N sinh
( ζβ
N

)(1 +
1

1− xζ tanh
( ζβ

2N

))]

+ 2N
[
exp
(

ζ2β2

2N2(ζ−1)

)
− 1
](
ϕ(x) + x

[
inf
Θi
R−R(θ̃)

]
+

xζdi

N sinh
( ζβ
N

)
− xζN

[
exp
( ζ2β2

2N2(ζ−1)

)
− 1
])

− (ζ + 1)
(ζ − 1)

[
2 log

[
ν(β)µ(i)

]
+ log

(η
2

)]
.

In order to keep the right order of magnitude while simplifying the bound,
let us consider

C1 = max
{
ζ − 1,

(
2N

ζβmax

)2
sinh

(
ζβmax

2N

)2
,

2N2(ζ−1)
ζ2β2

max

[
exp
(

ζ2β2
max

2N2(ζ−1)

)
− 1
]}
. (2.22)

Then, for any β ∈ (0, βmax),
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C(i, β) ≤ inf
y∈R+

3C1ζ
2β2

(ζ − 1)N

[
y
[
inf
Θi
R−R(θ̃)

]
+ ϕ(y) +

ydi

β
[
1− yC1ζ2β

2(ζ−1)N

]]

− (ζ + 1)
(ζ − 1)

[
2 log

[
ν(β)µ(i)

]
+ log

(η
2

)]
.

Thus

D
[
λ, γ, πiexp(−βr)

]
≤ λ

N tanh
(
λ
N

){λ[exp
( γ
N

)
− 1
]

γ

[
ϕ(x) + ϕ(y)

]
+ 4

1 + λ2

2Nγ

λ

[
3C1ζ

2β2

(ζ − 1)N

(
z
[
inf
Θi
R−R(θ̃)

]
+ ϕ(z) +

zdi

β
[
1− zC1ζ2β

2(ζ−1)N

])

− (ζ + 1)
(ζ − 1)

[
2 log

[
ν(β)µ(i)

]
+ log

(η
2

)]]

− 2(ζ + 1)
(ζ − 1)λ

[
log
[
3−1ν(λ)ε

]
+

λ2

2Nγ
log
[
3−1ν(γ)η

]]}

If we are not seeking tight constants, we can take for the sake of simplicity
λ = γ = β, x = y and ζ = 2.

Let us put

C2 = max
{
C1,

N
[
exp
(βmax

N

)
− 1
]

βmax
,

2N log
[
cosh

(βmax

N

)]
βmax tanh

(βmax

N

) ,
βmax

N tanh
(βmax

N

)}, (2.23)

so that

A(β, β)−1 ≤
(

1− C2xβ

N

)−1

,

B(β, β) ≤ 1 +
C2xβ

N
,

D
[
β, β, πiexp(−βr)

]
≤ C2

2

2β
N
ϕ(x)

+
(

4 + 2β
N

)C2

β

[
12C1β

2

N

(
z
[
inf
Θi
R−R(θ̃)

]
+ ϕ(z) +

zdi

β
[
1− 2zC1β

N

])

− 6 log
[
ν(β)µ(i)

]
− 3 log

(η
2

)]

− 6C2

β

[
log
[
3−1ν(β)ε

]
+

β

2N
log
[
3−1ν(β)η

]]
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and

Ci(ζ−1β, β) ≤ C1β
2

N

(
x
[
inf
Θi
R−R(θ̃)

]
+ ϕ(x) +

2xdi
β
[
1− xβ

N

]).
This leads to

ρbk(R) ≤ R(θ̃) + inf
i,β

(
1 + C2xβ

N

1− C2xβ
N

)2{
2di
β

+ inf
Θi
R−R(θ̃)

+
2
β

[
C1β

2

N

(
x
[
inf
Θi
R−R(θ̃

]
+ ϕ(x) +

2xdi
β
(
1− xβ

N

))

− log
[
ν(β)µ(i)η

]]}

+
2(

1− C2xβ
N

)2

{
C2

2

2β
N
ϕ(x)

+
(

4 + 2β
N

)C2

β

[
12C1β

2

N

(
x
[
inf
Θi
R−R(θ̃)

]
+ ϕ(x) +

xdi

β
[
1− 2xC1β

N

])
− 6 log

[
ν(β)µ(i)

]
− 3 log

(η
2

)]
− 6C2

β

[
log
[
3−1ν(β)ε

]
+

β

2N
log
[
3−1ν(β)η

]]}
.

We see in this expression that, in order to balance the various factors de-
pending on x it is advisable to choose x such that

inf
Θi
R−R(θ̃) =

ϕ(x)
x

,

as long as x ≤ N
4C2β

.
Following Mammen and Tsybakov, let us assume that the usual margin

assumption holds: for some real constants c > 0 and κ ≥ 1,

R(θ)−R(θ̃) ≥ c
[
D(θ, θ̃)

]κ
.

As D(θ, θ̃ ) ≥M ′(θ, θ̃ ), this also implies the weaker assumption

R(θ)−R(θ̃ ) ≥ c
[
M ′(θ, θ̃)

]κ
, θ ∈ Θ,

which we will really need and use. Let us take βmax = N and

ν =
1

dlog2(N)e

dlog2(N)e∑
k=1

δ2k .
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Then, as we have already seen, ϕ(x) ≤ (1−κ−1)
(
κcx
)− 1

κ−1 . Thus ϕ(x)/x ≤
bx−

κ
κ−1 , where b = (1− κ−1)

(
κc
)− 1

κ−1 . Let us choose accordingly

x = min
{
x1

def=
(

infΘi R−R(θ̃)
b

)−κ−1
κ

, x2
def=

N

4C2β

}
.

Using the fact that when r ∈ (0, 1
2),
(

1+r
1−r
)2 ≤ 1 + 16r ≤ 9, we get with P

probability at least 1− ε, for any β ∈ supp ν, in the case when x = x1 ≤ x2,

ρbk(R) ≤ inf
Θi
R+ 538C2

2

β

N
b
κ−1
κ
[
inf
Θi
R−R(θ̃)

] 1
κ

+
C2

β

[
138 di + 166 log

[
1 + log2(N)

]
− 134 log

[
µ(i)

]
− 102 log(ε) + 724

]
,

and in the case when x = x2 ≤ x1,

ρbk(R) ≤ inf
Θi
R+ 68C1

[
inf
Θi
R−R(θ̃)

]
+ 269C2

2

β

N
ϕ(x)

+
C2

β

[
138 di + 166 log

[
1 + log2(N)

]
− 134 log

[
µ(i)

]
− 102 log(ε) + 724

]
≤ inf

Θi
R+ 541C2

2

β

N
ϕ(x)

+
C2

β

[
138 di + 166 log

[
1 + log2(N)

]
− 134 log

[
µ(i)

]
− 102 log(ε) + 724

]
.

Thus with P probability at least 1− ε,

ρbk(R) ≤ inf
Θi
R+ inf

β∈(1,N)
1082C2

2

β

N
max

{
b
κ−1
κ
[
inf
Θi
R−R(θ̃)

] 1
κ ,

b

(
4C2β

N

) 1
κ−1
}

+
C2

β

[
138 di + 166 log

[
1 + log2(N)

]
− 134 log

[
µ(i)

]
− 102 log(ε) + 724

]
.

Theorem 2.2.11. With probability at least 1− ε, for any i ∈ N,

ρbk(R) ≤ inf
Θi
R

+ max

 847C
3
2
2

√√√√b
κ−1
κ

[
infΘi R−R(θ̃)

] 1
κ

{
di + log

(
1+log2(N)
εµ(i)

)
+ 5
}

N
,
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2C2

[
1082 b

] κ−1
2κ−1 4

1
2κ−1

166C2

[
di + log

(
1+log2(N)
εµ(i)

)
+ 5
]

N


κ

2κ−1

 ,

where C2, given by equation (2.23 page 108), will in most cases be close to
1, and in any case less than 3.2.

This result gives a bound of the same form as that given in Theorem 2.1.15
(page 85) in the special case when there is only one model — that is when
µ is a Dirac mass, for instance µ(1) = 1, implying that R(θ̃1) − R(θ̃) = 0.
Morover the parametric complexity assumption we made for this theorem,
given by equation (2.21 page 106), is weaker than the one used in Theorem
2.1.15 and described by equation (2.8, page 82). When there is more than
one model, the bound shows that the estimator makes a trade-off between
model accuracy, represented by infΘi R−R(θ̃), and dimension, represented
by di, and that for optimal parametric sub-models, meaning those for which
infΘi R = infΘR, the estimator does at least as well as the minimax optimal
convergence speed in the best of these.

Another point is that we obtain more explicit constants than in Theorem
2.1.15. It is also clear that a more careful choice of parameters could have
brought some improvement in the value of these constants.

These results show that the selection scheme described in this section
is a good candidate to perform temperature selection of a Gibbs posterior
distribution built within a single parametric model in a rate optimal way,
as well as a proposal with proven performance bound for model selection.

2.3. Two step localization

2.3.1. Two step localization of bounds relative to a Gibbs prior.
Let us reconsider the case where we want to choose adaptively among a fam-
ily of parametric models. Let us thus assume that the parameter set is a dis-
joint union of measurable sub-models, so that we can write Θ = tm∈MΘm,
where M is some measurable index set. Let us choose some prior probabil-
ity distribution on the index set µ ∈M1

+(M), and some regular conditional
prior distribution π : M → M1

+(Θ), such that π(i,Θi) = 1, i ∈ M . Let
us then study some arbitrary posterior distributions ν : Ω → M1

+(M) and
ρ : Ω × M :→ M1

+(Θ), such that ρ(ω, i,Θi) = 1, ω ∈ Ω, i ∈ M . We
would like to compare νρ(R) with some doubly localized prior distribution
µ

exp[− β
1+ζ2

πexp(−βR)(R)]

[
πexp(−βR)

]
(R) (where ζ2 is a positive parameter to be

set as needed later on). To ease notation we will define two prior distribu-
tions (one being more precisely a conditional distribution) depending on the
positive real parameters β and ζ2, putting

π = πexp(−βR) and µ = µ
exp[− β

1+ζ2
π(R)]

. (2.24)
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Similarly to Theorem 1.4.3 on page 53 we can write for any positive real
constants β and γ

P

{
(µπ)⊗ (µπ)

[
exp
[
−N log

[
1− tanh( γN )R′

]
− γr′ −N log

[
cosh( γN )

]
m′
]]}

≤ 1,

and deduce, using Lemma 1.1.3 on page 16, that

P

{
exp
[

sup
ν∈M1

+(M)

sup
ρ:M→M1

+(Θ)

{
−N log

[
1− tanh( γN )(νρ− µπ)(R)

]
− γ(νρ− µπ)(r)−N log

[
cosh( γN )

]
(νρ)⊗ (µπ)(m′)

−K(ν, µ)− ν
[
K(ρ, π)

]}]}
≤ 1. (2.25)

This will be our starting point in comparing νρ(R) with µπ(R). However,
obtaining an empirical bound will require some supplementary efforts. For
each index of the model index set M , we can write in the same way

P

{
π ⊗ π

[
exp
[
−N log

[
1− tanh( γN )R′

]
− γr′ −N log

[
cosh( γN )

]
m′
]]}

≤ 1.

Integrating this inequality with respect to µ and using Fubini’s lemma for
positive functions, we get

P

{
µ(π⊗π)

[
exp
[
−N log

[
1−tanh( γN )R′

]
−γr′−N log

[
cosh( γN )

]
m′
]]}

≤ 1.

Note that µ(π⊗π) is a probability measure on M ×Θ×Θ, whereas (µπ)⊗
(µπ) considered previously is a probability measure on
(M ×Θ)× (M ×Θ). We get as previously

P

{
exp
[

sup
ν∈M1

+(M)

sup
ρ:M→M1

+(Θ)

{
−N log

[
1− tanh( γN )ν(ρ− π)(R)

]
− γν(ρ− π)(r)−N log

[
cosh( γN )

]
ν(ρ⊗ π)(m′)

−K(ν, µ)− ν
[
K(ρ, π)

]}]}
≤ 1. (2.26)

Let us finally recall that

K(ν, µ) = β
1+ζ2

(ν − µ)π(R) + K(ν, µ)−K(µ, µ), (2.27)

K(ρ, π) = β(ρ− π)(R) + K(ρ, π)−K(π, π). (2.28)

From equations (2.25), (2.26) and (2.28) we deduce
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Proposition 2.3.1. For any positive real constants β, γ and ζ2, with P
probability at least 1− ε, for any posterior distribution ν : Ω→M1

+(M) and
any conditional posterior distribution ρ : Ω×M →M1

+(Θ),

−N log
[
1− tanh( γN )(νρ− µπ)(R)

]
− βν(ρ− π)(R)

≤ γ(νρ− µπ)(r) +N log
[
cosh( γN )

]
(νρ)⊗ (µπ)(m′)

+ K(ν, µ) + ν
[
K(ρ, π)

]
− ν
[
K(π, π)

]
+ log

(
2
ε

)
.

and

−N log
[
1− tanh( γN )ν(ρ− π)(R)

]
≤ γν(ρ− π)(r) +N log

[
cosh( γN )

]
ν(ρ⊗ π)(m′)

+ K(ν, µ) + ν
[
K(ρ, π)

]
+ log

(
2
ε

)
,

where the prior distribution µπ is defined by equation (2.24) on page 111
and depends on β and ζ2.

Let us put for short

T = tanh( γN ) and C = N log
[
cosh( γN )

]
.

We will use an entropy compensation strategy for which we need a couple
of entropy bounds. We have according to Proposition 2.3.1, with P proba-
bility at least 1− ε,

ν
[
K(ρ, π)

]
= βν(ρ− π)(R) + ν

[
K(ρ, π)−K(π, π)

]
≤ β

NT

[
γν(ρ− π)(r) + Cν(ρ⊗ π)(m′)

+ K(ν, µ) + ν
[
K(ρ, π)

]
+ log(2

ε )
]

+ ν
[
K(ρ, π)−K(π, π)

]
.

Similarly

K(ν, µ) =
β

1 + ζ2
(ν − µ)π(R) + K(ν, µ)−K(µ, µ)

≤ β

(1 + ζ2)NT

[
γ(ν − µ)π(r) + C(νπ)⊗ (µπ)(m′)

+ K(ν, µ) + log(2
ε )
]

+ K(ν, µ)−K(µ, µ).

Thus, for any positive real constants β, γ and ζi, i = 1, . . . , 5, with P prob-
ability at least 1− ε, for any posterior distributions ν, ν3 : Ω→M1

+(Θ), any
posterior conditional distributions ρ, ρ1, ρ2, ρ4, ρ5 : Ω×M →M1

+(Θ),
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−N log
[
1− T (νρ− µπ)(R)

]
− βν(ρ− π)(R)

≤ γ(νρ− µπ)(r) + C(νρ)⊗ (µπ)(m′)
+ K(ν, µ) + ν

[
K(ρ, π)−K(π, π)

]
+ log(2

ε ),

ζ1
NT

β
µ
[
K(ρ1, π)

]
≤ ζ1γµ(ρ1 − π)(r) + ζ1Cµ(ρ1 ⊗ π)(m′)

+ ζ1µ
[
K(ρ1, π)

]
+ ζ1 log(2

ε ) + ζ1
NT

β
µ
[
K(ρ1, π)−K(π, π)

]
,

ζ2
NT

β
ν
[
K(ρ2, π)

]
≤ ζ2γν(ρ2 − π)(r) + ζ2Cν(ρ2 ⊗ π)(m′)

+ ζ2K(ν, µ) + ζ2ν
[
K(ρ2, π)

]
+ ζ2 log(2

ε )

+ ζ2
NT

β
ν
[
K(ρ2, π)−K(π, π)

]
,

ζ3(1 + ζ2)
NT

β
K(ν3, µ) ≤ ζ3γ(ν3 − µ)π(r)

+ ζ3C
[
(ν3π)⊗ (ν3ρ1) + (ν3ρ1)⊗ (µπ)

]
(m′) + ζ3K(ν3, µ) + ζ3 log(2

ε )

+ ζ3(1 + ζ2)
NT

β

[
K(ν3, µ)−K(µ, µ)

]
,

ζ4
NT

β
ν3

[
K(ρ4, π)

]
≤ ζ4γν3(ρ4 − π)(r)

+ ζ4Cν3(ρ4 ⊗ π)(m′) + ζ4K(ν3, µ) + ζ4ν3

[
K(ρ4, π)

]
+ ζ4 log(2

ε )

+ ζ4
NT

β
ν3

[
K(ρ4, π)−K(π, π)

]
,

ζ5
NT

β
µ
[
K(ρ5, π)

]
≤ ζ5γµ(ρ5 − π)(r) + ζ5Cµ(ρ5 ⊗ π)(m′)

+ ζ5µ
[
K(ρ5, π)

]
+ ζ5 log(2

ε ) + ζ5
NT

β
µ
[
K(ρ5, π)−K(π, π)

]
.

Adding these six inequalities and assuming that

ζ4 ≤ ζ3

[
(1 + ζ2)NTβ − 1

]
, (2.29)

we find

−N log
[
1− T (νρ− µπ)(R)

]
− β(νρ− µπ)(R)

≤ −N log
[
1− T (νρ− µπ)(R)

]
− β(νρ− µπ)(R)

+ ζ1

(
NT
β − 1

)
µ
[
K(ρ1, π)

]
+ ζ2

(
NT
β − 1

)
ν
[
K(ρ2, π)

]
+
[
ζ3(1 + ζ2)NTβ − ζ3 − ζ4

]
K(ν3, µ)

+ ζ4

(
NT
β − 1

)
ν3

[
K(ρ4, π)

]
+ ζ5

(
NT
β − 1

)
µ
[
K(ρ5, π)

]
≤ γ(νρ− µπ)(r) + ζ1γµ(ρ1 − π)(r) + ζ2γν(ρ2 − π)(r)

+ ζ3γ(ν3 − µ)π(r) + ζ4γν3(ρ4 − π)(r) + ζ5γµ(ρ5 − π)(r)
+ C

[
(νρ)⊗ (µπ) + ζ1µ(ρ1 ⊗ π) + ζ2ν(ρ2 ⊗ π)
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+ ζ3(ν3π)⊗ (ν3ρ1) + ζ3(ν3ρ1)⊗ (µπ)
+ ζ4ν3(ρ4 ⊗ π) + ζ5µ(ρ5 ⊗ π)

]
(m′)

+ (1 + ζ2)
[
K(ν, µ)−K(µ, µ)

]
+ ν
[
K(ρ, π)−K(π, π)

]
+ ζ1

NT
β µ
[
K(ρ1, π)−K(π, π)

]
+ ζ2

NT
β ν
[
K(ρ2, π)−K(π, π)

]
+ ζ3(1 + ζ2)NTβ

[
K(ν3, µ)−K(µ, µ)

]
+ ζ4

NT
β ν3

[
K(ρ4, π)−K(π, π)

]
+ ζ5

NT
β µ
[
K(ρ5, π)−K(π, π)

]
+ (1 + ζ1 + ζ2 + ζ3 + ζ4 + ζ5) log(2

ε ),

where we have also used the fact (concerning the 11th line of the preceding
inequalities) that

− β(νρ− µπ)(R) + K(ν, µ) + ν
[
K(ρ, π)

]
≤ −β(νρ− µπ)(R) + (1 + ζ2)K(ν, µ) + ν

[
K(ρ, π)

]
= (1 + ζ2)

[
K(ν, µ)−K(µ, µ)

]
+ ν
[
K(ρ, π)−K(π, π)

]
.

Let us now apply to π (we shall later do the same with µ) the following
inequalities, holding for any random functions of the sample and the param-
eters h : Ω×Θ→ R and g : Ω×Θ→ R,

π(g − h)−K(π, π) ≤ sup
ρ:Ω×M→M1

+(Θ)

ρ(g − h)−K(ρ, π)

= log
{
π
[
exp(g − h)

]}
= log

{
π
[
exp(−h)

]}
+ log

{
πexp(−h)

[
exp(g)

]}
= −πexp(−h)(h)−K(πexp(−h), π) + log

{
πexp(−h)

[
exp(g)

]}
.

When h and g are observable, and h is not too far from βr ' βR, this gives a
way to replace π with a satisfactory empirical approximation. We will apply
this method, choosing ρ1 and ρ5 such that µπ is replaced either with µρ1,
when it comes from the first two inequalities or with µρ5 otherwise, choosing
ρ2 such that νπ is replaced with νρ2 and ρ4 such that ν3π is replaced with
ν3ρ4. We will do so because it leads to a lot of helpful cancellations. For
those to happen, we need to choose ρi = πexp(−λir), i = 1, 2, 4, where λ1, λ2

and λ4 are such that

(1 + ζ1)γ = ζ1
NT
β λ1, (2.30)

ζ2γ =
(
1 + ζ2

NT
β

)
λ2, (2.31)

(ζ4 − ζ3)γ = ζ4
NT

β
λ4, (2.32)

ζ3γ = ζ5
NT
β λ5, (2.33)

and to assume that
ζ4 > ζ3. (2.34)

We obtain that with P probability at least 1− ε,
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−N log
[
1− T (µρ− µπ)(R)

]
− β(νρ− µπ)(R)

≤ γ(νρ− µρ1)(r) + ζ3γ(ν3ρ4 − µρ5)(r)

+ ζ1
NT
β µ

{
log

[
ρ1

{
exp
[
C β
NTζ1

[
νρ+ ζ1ρ1

]
(m′)

]}]}

+
(
1 + ζ2

NT
β

)
ν

{
log

{
ρ2

{
exp
[

C
1+ζ2

NT
β

ζ2ρ2(m′)
]}]}

+ ζ4
NT
β ν3

{
log

[
ρ4

{
exp
[
C β
NTζ4

[
ζ3ν3ρ1 + ζ4ρ4

]
(m′)

]}]}

+ ζ5
NT
β µ

{
log

[
ρ5

{
exp
[
C β
NTζ5

[
ζ3ν3ρ1 + ζ5ρ5

]
(m′)

]}]}
+ (1 + ζ2)

[
K(ν, µ)−K(µ, µ)

]
+ ν
[
K(ρ, π)−K(ρ2, π)

]
+ ζ3(1 + ζ2)NTβ

[
K(ν3, µ)−K(µ, µ)

]
+
(

1 +
5∑
i=1

ζi

)
log
(

2
ε

)
.

In order to obtain more cancellations while replacing µ by some posterior
distribution, we will choose the constants such that λ5 = λ4, which can be
done by choosing

ζ5 =
ζ3ζ4

ζ4 − ζ3
. (2.35)

We can now replace µ with µexp−ξ1ρ1(r)−ξ4ρ4(r), where

ξ1 =
γ

(1 + ζ2)
(
1 + NT

β ζ3

) , (2.36)

ξ4 =
γζ3

(1 + ζ2)
(
1 + NT

β ζ3

) . (2.37)

Choosing moreover ν3 = µexp−ξ1ρ1(r)−ξ4ρ4(r), to induce some more cancella-
tions, we get

Theorem 2.3.2. Let us use the notation introduced above. For any positive
real constants satisfying equations (2.29, page 114), (2.30, page 115), (2.31,
page 115), (2.32, page 115), (2.33, page 115), (2.34, page 115), (2.35, page
116), (2.36, page 116), (2.37, page 116), with P probability at least 1−ε, for
any posterior distribution ν : Ω → M1

+(M) and any conditional posterior
distribution ρ : Ω×M →M1

+(Θ),

−N log
[
1− T (νρ− µπ)(R)

]
− β(νρ− µπ)(R) ≤ B(ν, ρ, β),

where B(ν, ρ, β) def= γ(νρ− ν3ρ1)(r)

+ (1 + ζ2)
(
1 + NT

β ζ3

)
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× log

{
ν3

[
ρ1

{
exp
[
C β
NTζ1

[
νρ+ ζ1ρ1

]
(m′)

]} ζ1NT

β(1+ζ2)(1+NT
β
ζ3)

× ρ4

{
exp
[
C β
NTζ5

[
ζ3ν3ρ1 + ζ5ρ4

]
(m′)

]} ζ5NT

β(1+ζ2)(1+NT
β
ζ3)

]}

+
(
1 + ζ2

NT
β

)
ν

{
log

{
ρ2

{
exp
[

C
1+ζ2

NT
β

ζ2ρ2(m′)
]}]}

+ ζ4
NT
β ν3

{
log

[
ρ4

{
exp
[
C β
NTζ4

[
ζ3ν3ρ1 + ζ4ρ4

]
(m′)

]}]}
+ (1 + ζ2)

[
K(ν, µ)−K(ν3, µ)

]
+ ν
[
K(ρ, π)−K(ρ2, π)

]
+
(

1 +
5∑
i=1

ζi

)
log
(

2
ε

)
.

This theorem can be used to find the largest value β̂(νρ) of β such that
B(ν, ρ, β) ≤ 0, thus providing an estimator for β(νρ) defined as νρ(R) =
µβ(νρ)πβ(νρ)(R), where we have mentioned explicitly the dependence of µ and
π in β, the constant ζ2 staying fixed. The posterior distribution νρ may then
be chosen to maximize β̂(νρ) within some manageable subset of posterior
distributions P, thus gaining the assurance that νρ(R) ≤ µbβ(νρ)

πbβ(νρ)
(R),

with the largest parameter β̂(νρ) that this approach can provide. Maximiz-
ing β̂(νρ) is supported by the fact that limβ→+∞ µβπβ(R) = ess infµπ R.
Anyhow, there is no assurance (to our knowledge) that β 7→ µβπβ(R) will
be a decreasing function of β all the way, although this may be expected to
be the case in many practical situations.

We can make the bound more explicit in several ways. One point of view
is to put forward the optimal values of ρ and ν. We can thus remark that

ν
[
γρ(r) + K(ρ, π)−K(ρ2, π)

]
+ (1 + ζ2)K(ν, µ)

= ν

[
K
[
ρ, πexp(−γr)

]
+ λ2ρ2(r) +

∫ γ

λ2

πexp(−αr)(r)dα
]

+ (1 + ζ2)K(ν, µ)

= ν
{
K
[
ρ, πexp(−γr)

]}
+ (1 + ζ2)K

[
ν, µ

exp
(
−λ2ρ2(r)

1+ζ2
− 1

1+ζ2

R γ
λ2
πexp(−αr)(r)dα

)]
− (1 + ζ2) log

{
µ

[
exp
{
− λ2

1 + ζ2
ρ2(r)− 1

1 + ζ2

∫ γ

λ2

πexp(−αr)(r)dα
}]}

.

Thus

B(ν, ρ, β) = (1 + ζ2)
[
ξ1ν3ρ1(r) + ξ4ν3ρ4(r)

+ log
{
µ
[
exp
(
−ξ1ρ1(r)− ξ4ρ4(r)

)]}]
− (1 + ζ2) log

{
µ

[
exp
{
− λ2

1 + ζ2
ρ2(r)− 1

1 + ζ2

∫ γ

λ2

πexp(−αr)(r)dα
}]}
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− γν3ρ1(r) + (1 + ζ2)
(
1 + NT

β ζ3

)
× log

{
ν3

[
ρ1

{
exp
[
C β
NTζ1

[
νρ+ ζ1ρ1

]
(m′)

]} ζ1NT

β(1+ζ2)(1+NT
β
ζ3)

× ρ4

{
exp
[
C β
NTζ5

[
ζ3ν3ρ1 + ζ5ρ4

]
(m′)

]} ζ5NT

β(1+ζ2)(1+NT
β
ζ3)

]}

+
(
1 + ζ2

NT
β

)
ν

{
log

{
ρ2

{
exp
[

C
1+ζ2

NT
β

ζ2ρ2(m′)
]}]}

+ ζ4
NT
β ν3

{
log

[
ρ4

{
exp
[
C β
NTζ4

[
ζ3ν3ρ1 + ζ4ρ4

]
(m′)

]}]}
+ ν
{
K
[
ρ, πexp(−γr)

]}
+ (1 + ζ2)K

[
ν, µ

exp
(
−λ2ρ2(r)

1+ζ2
− 1

1+ζ2

R γ
λ2
πexp(−αr)(r)dα

)]
+
(

1 +
5∑
i=1

ζi

)
log
(

2
ε

)
.

This formula is better understood when thinking about the following upper
bound for the two first lines in the expression of B(ν, ρ, β):

(1 + ζ2)
[
ξ1ν3ρ1(r) + ξ4ν3ρ4(r) + log

{
µ
[
exp
(
−ξ1ρ1(r)− ξ4ρ4(r)

)]}]
− (1 + ζ2) log

{
µ

[
exp
{
− λ2

1 + ζ2
ρ2(r)

− 1
1 + ζ2

∫ γ

λ2

πexp(−αr)(r)dα
}]}

− γν3ρ1(r)

≤ ν3

[
λ2ρ2(r) +

∫ γ

λ2

πexp(−αr)(r)dα− γρ1(r)
]
.

Another approach to understanding Theorem 2.3.2 is to put forward ρ0 =
πexp(−λ0r), for some positive real constant λ0 < γ, noticing that

ν
[
K(ρ0, π)−K(ρ2, π)

]
= λ0ν(ρ2 − ρ0)(r)− ν

[
K(ρ2, ρ0)

]
.

Thus

B(ν, ρ0, β) ≤ ν3

[
(γ − λ0)(ρ0 − ρ1)(r) + λ0(ρ2 − ρ1)(r)

]
+ (1 + ζ2)

(
1 + NT

β ζ3

)
× log

{
ν3

[
ρ1

{
exp
[
C β
NTζ1

[
νρ0 + ζ1ρ1

]
(m′)

]} ζ1NT

β(1+ζ2)(1+NT
β
ζ3)

× ρ4

{
exp
[
C β
NTζ5

[
ζ3ν3ρ1 + ζ5ρ4

]
(m′)

]} ζ5NT

β(1+ζ2)(1+NT
β
ζ3)

]}
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+
(
1 + ζ2

NT
β

)
ν

{
log

{
ρ2

{
exp
[

C
1+ζ2

NT
β

ζ2ρ2(m′)
]}]}

+ ζ4
NT
β ν3

{
log

[
ρ4

{
exp
[
C β
NTζ4

[
ζ3ν3ρ1 + ζ4ρ4

]
(m′)

]}]}
+ (1 + ζ2)K

[
ν, µ

exp
(
− (γ−λ0)ρ0(r)+λ0ρ2(r)

1+ζ2

)]
− ν
[
K(ρ2, ρ0)

]
+
(

1 +
5∑
i=1

ζi

)
log
(

2
ε

)
.

In the case when we want to select a single model m̂(ω), and therefore to
set ν = δbm, the previous inequality engages us to take

m̂ ∈ arg min
m∈M

(γ − λ0)ρ0(m, r) + λ0ρ2(m, r).

In parametric situations where

πexp(−λr)(r) ' r?(m) +
de(m)
λ

,

we get

(γ − λ0)ρ0(m, r)− λ0ρ2(m, r) ' γ
[
r?(m) + de(m)

(
1
λ0

+ λ0−λ2
γλ2

)]
,

resulting in a linear penalization of the empirical dimension of the models.

2.3.2. Analysis of two step bounds relative to a Gibbs prior.
We will not state a formal result, but will nevertheless give some hints
about how to establish one. This is a rather technical section, which can be
skipped at a first reading , since it will not be used below. We should start
from Theorem 1.4.2 (page 52), which gives a deterministic variance term.
From Theorem 1.4.2, after a change of prior distribution, we obtain for any
positive constants α1 and α2, any prior distributions µ̃1 and µ̃2 ∈ M1

+(M),
for any prior conditional distributions π̃1 and π̃2 : M → M1

+(Θ), with P
probability at least 1− η, for any posterior distributions ν1ρ1 and ν2ρ2,

α1(ν1ρ1 − ν2ρ2)(R) ≤ α2(ν1ρ1 − ν2ρ2)(r)
+ K

[
(ν1ρ1)⊗ (ν2ρ2), (µ̃1 π̃1)⊗ (µ̃2 π̃2)

]
+ log

{
(µ̃1 π̃1)⊗ (µ̃2 π̃2)

[
exp
{
−α2Ψα2

N
(R′,M ′) + α1R

′}]}− log(η).

Applying this to α1 = 0, we get that

(νρ− ν3ρ1)(r) ≤ 1
α2

[
K
[
(νρ)⊗ (ν3ρ1), (µ̃ π̃)⊗ (µ̃3 π̃1)

]
+ log

{
(µ̃ ν̃)⊗ (µ̃3 π̃1)

[
exp
{
α2Ψ−α2

N
(R′,M ′)

}]}
− log(η)

]
.
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In the same way, to bound quantities of the form

log

{
ν3

[
ρ1

{
exp
[
C1(νρ+ ζ1ρ1)(m′)

]}p1
× ρ4

{
exp
[
C2

[
ζ3ν3ρ1 + ζ5ρ4

]
(m′)

]}p2]}

= sup
ν5

{
p1 sup

ρ5

{
C1

[
(νρ)⊗ (ν5ρ5) + ζ1ν5(ρ1 ⊗ ρ5)

]
(m′)−K(ρ5, ρ1)

}
+ p2 sup

ρ6

{
C2

[
ζ3(ν3ρ1)⊗ (ν5ρ6)

+ ζ5ν5(ρ4 ⊗ ρ6)
]
(m′)−K(ρ6, ρ4)

}
−K(ν5, ν3)

}
,

where C1, C2, p1 and p2 are positive constants, and similar terms, we need
to use inequalities of the type: for any prior distributions µ̃i π̃i, i = 1, 2, with
P probability at least 1− η, for any posterior distributions νiρi, i = 1, 2,

α3(ν1ρ1)⊗ (ν2ρ2)(m′) ≤ log
{

(µ̃1 π̃1)⊗ (µ̃2 π̃2) exp
[
α3Φ−α3

N

(M ′)
]}

+ K
[
(ν1ρ1)⊗ (ν2ρ2), (µ̃1 π̃1)⊗ (µ̃2 π̃2)

]
− log(η).

We need also the variant: with P probability at least 1−η, for any posterior
distribution ν1 : Ω → M1

+(M) and any conditional posterior distributions
ρ1, ρ2 : Ω×M →M1

+(Θ),

α3ν1(ρ1 ⊗ ρ2)(m′) ≤ log
{
µ̃1

(
π̃1 ⊗ π̃2

)
exp
[
α3Φ−α3

N
(M ′)

]}
+ K(ν1, µ̃1) + ν1

{
K
[
ρ1 ⊗ ρ2, π̃1 ⊗ π̃2

]}
− log(η).

We deduce that

log

{
ν3

[
ρ1

{
exp
[
C1(νρ+ ζ1ρ1)(m′)

]}p1
× ρ4

{
exp
[
C2

[
ζ3ν3ρ1 + ζ5ρ4

]
(m′)

]}p2]}

≤ sup
ν5

{
p1 sup

ρ5

[
C1

α3

{
log
{

(µ̃ π̃)⊗ (µ̃5 π̃5) exp
[
α3Φ−α3

N
(M ′)

]}
+ K

[
(νρ)⊗ (ν5ρ5), (µ̃ π̃ ⊗ (µ̃5 π̃5)

]
+ log( 2

η )

+ ζ1

[
log
{
µ̃5

(
π̃1 ⊗ π̃5

)
exp
[
α3Φ−α3

N
(M ′)

]}
+ K(ν5, µ̃5) + ν5

{
K
[
ρ1 ⊗ ρ5, π̃1 ⊗ π̃5

]}
+ log

(
2
η

)]}
−K(ρ5, ρ1)

]



2.3. Two step localization 121

+ p2 sup
ρ6

[
C1

α3

{
log
{

(µ̃3 π̃1)⊗ (µ̃5 π̃6) exp
[
α3Φ−α3

N
(M ′)

]}
+ K

[
(ν3ρ1)⊗ (ν5ρ6), (µ̃3 π̃1 ⊗ (µ̃5 π̃6)

]
+ log( 2

η )

+ ζ1

[
log
{
µ̃5

(
π̃4 ⊗ π̃6

)
exp
[
α3Φ−α3

N
(M ′)

]}
+ K(ν5, µ̃5) + ν5

{
K
[
ρ4 ⊗ ρ6, π̃4 ⊗ π̃6

]}
+ log

(
2
η

)]}
−K(ρ6, ρ4)

]
−K(ν5, ν3)

}
.

We are then left with the need to bound entropy terms like K(ν3ρ1, µ̃3π̃1),
where we have the choice of µ̃3 and π̃1, to obtain a useful bound. As could
be expected, we decompose it into

K(ν3ρ1, µ̃3π̃1) = K(ν3, µ̃3) + ν3

[
K(ρ1, π̃1)

]
.

Let us look after the second term first, choosing π̃1 = πexp(−β1R):

ν3

[
K(ρ1, π̃1)

]
= ν3

[
β1(ρ1 − π̃1)(R) + K(ρ1, π)−K(π̃1, π)

]
≤ β1

α1

[
α2ν3(ρ1 − π̃1)(r) + K(ν3, µ̃3) + ν3

[
K(ρ1, π̃1)

]
+ log

{
µ̃3

(
π̃⊗2

1

)[
exp
{
−α2Ψα2

N
(R′,M ′) + α1R

′}]}− log(η)
]

+ ν3

[
K(ρ1, π)−K(π̃1, π)

]
≤ β1

α1

[
K(ν3, µ̃3) + ν3

[
K(ρ1, π̃1)

]
+ log

{
µ̃3

(
π̃⊗2

1

)[
exp
{
−α2Ψα2

N
(R′,M ′) + α1R

′}]}− log(η)
]

+ ν3

{
K
[
ρ1, πexp(−β1α2

α1
r)

]}
.

Thus, when the constraint λ1 = β1α2

α1
is satisfied,

ν3

[
K(ρ1, π̃1)

]
≤
(

1− β1

α1

)−1 β1

α1

[
K(ν3, µ̃3)

+ log
{
µ̃3

(
π̃⊗2

1

)[
exp
{
−α2Ψα2

N
(R′,M ′) + α1R

′}]}− log(η)
]
.

We can further specialize the constants, choosing α1 = N sinh(α2
N ), so that

−α2Ψα2
N

(R′,M ′) + α1R
′ ≤ 2N sinh

( α2

2N

)2
M ′.

We can for instance choose α2 = γ, α1 = N sinh( γN ) and β1 = λ1
N
γ sinh( γN ),

leading to
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Proposition 2.3.3. With the notation of Theorem 2.3.2, the constants be-
ing set as explained above, putting π̃1 = πexp(−λ1

N
γ

sinh( γ
N

)R), with P proba-
bility at least 1− η,

ν3

[
K(ρ1, π̃1)

]
≤
(

1− λ1

γ

)−1λ1

γ

[
K(ν3, µ̃3)

+ log
{
µ̃3

(
π̃⊗2

1

)[
exp
{

2N sinh( γ
2N )2M ′

}]}
− log(η)

]
.

More generally

ν3

[
K(ρ, π̃1)

]
≤
(

1− λ1

γ

)−1λ1

γ

[
K(ν3, µ̃3)

+ log
{
µ̃3

(
π̃⊗2

1

)[
exp
{

2N sinh( γ
2N )2M ′

}]}
− log(η)

]
+
(

1− λ1

γ

)−1
ν3

[
K(ρ, ρ1)

]
.

In a similar way, let us now choose µ̃3 = µexp[−α3π(R)]. We can write

K(ν, µ̃3) = α3(ν − µ̃3)π(R) + K(ν, µ)−K(µ̃3, µ)

≤ α3

α1

[
α2(ν − µ̃3)π(r) + K(ν, µ̃3)

+ log
{

(µ̃3π)⊗ (µ̃3π)
[
exp
{
−α2Ψα2

N
(R′,M ′) + α1R

′}]}− log(η)
]

+ K(ν, µ)−K(µ̃3, µ).

Let us choose α2 = γ, α1 = N sinh( γN ), and let us add some other entropy
inequalities to get rid of π in a suitable way, the approach of entropy com-
pensation being the same as that used to obtain the empirical bound of
Theorem 2.3.2 (page 116). This results with P probability at least 1− η in(

1− α3

α1

)
K(ν, µ̃3) ≤ α3

α1

[
γ(ν − µ̃3)π(r)

+ log
{

(µ̃3π)⊗ (µ̃3π)
[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}+ log( 2
η )
]

+ K(ν, µ)−K(µ̃3, µ),

ζ6

(
1− β

α1

)
µ̃3

[
K(ρ6, π)

]
≤ ζ6

β

α1

[
γµ̃3(ρ6 − π)(r)

+ log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}+ log( 2
η )
]

+ ζ6µ̃3

[
K(ρ6, π)−K(π, π)

]
,

ζ7

(
1− β

α1

)
µ̃3

[
K(ρ7, π)

]
≤ ζ7

β

α1

[
γµ̃3(ρ7 − π)(r)
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+ log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}+ log( 2
η )
]

+ ζ7µ̃3

[
K(ρ7, π)−K(π, π)

]
,

ζ8

(
1− β

α1

)
ν
[
K(ρ8, π)

]
≤ ζ8

β

α1

[
γν(ρ8 − π)(r) + K(ν, µ̃3)

+ log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}+ log( 2
η )
]

+ ζ8ν
[
K(ρ8, π)−K(π, π)

]
,

ζ9

(
1− β

α1

)
ν
[
K(ρ9, π)

]
≤ ζ9

β

α1

[
γν(ρ9 − π)(r) + K(ν, µ̃3)

+ log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}+ log( 2
η )
]

+ ζ9ν
[
K(ρ9, π)−K(π, π)

]
,

where we have introduced a bunch of constants, assumed to be positive, that
we will more precisely set to

x8 + x9 = 1,

(ζ6β + x8α3)
γ

α1
= λ6,

(ζ7β + x9α3)
γ

α1
= λ7,

(ζ8β − x8α3)
γ

α1
= λ8,

(ζ9β − x9α3)
γ

α1
= λ9.

We get with P probability at least 1− η,(
1− α3

α1
− (ζ8 + ζ9)

β

α1

)
K(ν, µ̃3) ≤

α3

α1

[
γ
[
ν(x8ρ8 + x9ρ9)(r)− µ̃3(x8ρ6 + x9ρ7)(r)

]
+
α3

α1
log
{

(µ̃3π)⊗ (µ̃3π)
[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}
+ (ζ6 + ζ7 + ζ8 + ζ9)

β

α1
log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}
+ K(ν, µ)−K(µ̃3, µ) +

(α3

α1
+ (ζ6 + ζ7 + ζ8 + ζ9)

β

α1

)
log
(

2
η

)
.

Let us choose the constants so that λ1 = λ7 = λ9, λ4 = λ6 = λ8, α3x9
γ
α1

= ξ1

and α3x8
γ
α1

= ξ4. This is done by setting

x8 =
ξ4

ξ1 + ξ4
,
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x9 =
ξ1

ξ1 + ξ4
,

α3 = N
γ sinh( γN )(ξ1 + ξ4),

ζ6 = N
γ sinh( γN )

(λ4 − ξ4)
β

,

ζ7 = N
γ sinh( γN )

(λ1 − ξ1)
β

,

ζ8 = N
γ sinh( γN )

(λ4 + ξ4)
β

,

ζ9 = N
γ sinh( γN )

(λ1 + ξ1)
β

.

The inequality λ1 > ξ1 is always satisfied. The inequality λ4 > ξ4 is required
for the above choice of constants, and will be satisfied for a suitable choice
of ζ3 and ζ4.

Under these assumptions, we obtain with P probability at least 1− η(
1− α3

α1
− (ζ8 + ζ9)

β

α1

)
K(ν, µ̃3) ≤ (ν − µ̃3)(ξ1ρ1 + ξ4ρ4)(r)

+
α3

α1
log
{

(µ̃3π)⊗ (µ̃3π)
[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}
+ (ζ6 + ζ7 + ζ8 + ζ9)

β

α1
log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}
+ K(ν, µ)−K(µ̃3, µ) +

(α3

α1
+ (ζ6 + ζ7 + ζ8 + ζ9)

β

α1

)
log
(

2
η

)
.

This proves

Proposition 2.3.4. The constants being set as explained above, with P
probability at least 1− η, for any posterior distribution ν : Ω→M1

+(M),

K(ν, µ̃3) ≤
(

1− α3

α1
− (ζ8 + ζ9)

β

α1

)−1
[
K(ν, ν3)

+
α3

α1
log
{

(µ̃3π)⊗ (µ̃3π)
[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}
+ (ζ6 + ζ7 + ζ8 + ζ9)

β

α1
log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}
+
(α3

α1
+ (ζ6 + ζ7 + ζ8 + ζ9)

β

α1

)
log
(

2
η

)]
.

Thus

K(ν3ρ1, µ̃3 π̃1) ≤
1 +

(
1− λ1

γ

)−1 λ1
γ

1− α3
α1
− (ζ8 + ζ9) βα1

×
[
α3

α1
log
{

(µ̃3π ⊗ (µ̃3π)
[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}
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+ (ζ6 + ζ7 + ζ8 + ζ9)
β

α1
log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′}]}
+
(α3

α1
+ (ζ6 + ζ7 + ζ8 + ζ9)

β

α1

)
log
(

2
η

)]
+
(

1− λ1

γ

)−1λ1

γ

[
log
{
µ̃3

(
π̃⊗2

1

)[
exp
{

2N sinh
( γ

2N

)2
M ′
}]}
− log( 2

η )
]
.

We will not go further, lest it may become tedious, but we hope we have given
sufficient hints to state informally that the bound B(ν, ρ, β) of Theorem 2.3.2
(page 116) is upper bounded with P probability close to one by a bound of
the same flavour where the empirical quantities r and m′ have been replaced
with their expectations R and M ′.

2.3.3. Two step localization between posterior distributions.
Here we work with a family of prior distributions described by a regular
conditional prior distribution π = M → M1

+(Θ), where M is some mea-
surable index set. This family may typically describe a countable family of
parametric models. In this case M = N, and each of the prior distributions
π(i, .), i ∈ N satisfies some parametric complexity assumption of the type

lim sup
β→+∞

β
[
πexp(−βR)(i, .)(R)− ess inf

π(i,.)
R
]

= di < +∞, i ∈M.

Let us consider also a prior distribution µ ∈ M1
+(M) defined on the index

set M .
Our aim here will be to compare the performance of two given posterior

distributions ν1ρ1 and ν2ρ2, where ν1, ν2 : Ω → M1
+(M), and where ρ1, ρ2 :

Ω ×M → M1
+(Θ). More precisely, we would like to establish a bound for

(ν1ρ1 − ν2ρ2)(R) which could be a starting point to implement a selection
method similar to the one described in Theorem 2.2.4 (page 93). To this
purpose, we can start with Theorem 2.2.1 (page 88), which says that with
P probability at least 1− ε,

−N log
{

1− tanh( λN )
(
ν1ρ1 − ν2ρ2

)
(R)
}
≤ λ(ν1ρ1 − ν2ρ2)(r)

+N log
[
cosh( λN )

]
(ν1ρ1)⊗ (ν2ρ2)(m′) + K(ν1, µ̃) + K(ν2, µ̃)

+ ν1

[
K(ρ1, π̃)

]
+ ν2

[
K(ρ2, π̃)

]
− log(ε),

where µ̃ ∈ M1
+(M) and π̃ : M → M1

+(Θ) are suitably localized prior dis-
tributions to be chosen later on. To use these localized prior distributions,
we need empirical bounds for the entropy terms K(νi, µ̃) and νi

[
K(ρi, π̃)

]
,

i = 1, 2.
Bounding ν

[
K(ρ, π̃)

]
can be done using the following generalization of

Corollary 2.1.19 page 88:

Corollary 2.3.5. For any positive real constants γ and λ such that γ <
λ, for any prior distribution µ ∈ M1

+(M) and any conditional prior distri-
bution π : M → M1

+(Θ), with P probability at least 1− ε, for any posterior
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distribution ν : Ω → M1
+(M), and any conditional posterior distribution

ρ : Ω×M →M1
+(Θ),

ν
{

K
[
ρ, πexp[−N γ

λ
tanh( λ

N
)R]

]}
≤ K ′(ν, ρ, γ, λ, ε) +

1
λ
γ − 1

K(ν, µ),

where

K ′(ν, ρ, γ, λ, ε) def=
(

1− γ
λ

)−1
{
ν
[
K(ρ, πexp(−γr)

]
− γ

λ
log(ε) + ν

{
log
[
πexp(−γr)

(
exp
{
N γ

λ log
[
cosh( λN )

]
ρ(m′)

})]}}
.

To apply this corollary to our case, we have to set

π̃ = πexp[−N γ
λ

tanh( λ
N

)R].

Let us also consider for some positive real constant β the conditional prior
distribution

π = πexp(−βR)

and the prior distribution

µ = µexp[−απ(R)].

Let us see how we can bound, given any posterior distribution ν : Ω →
M1

+(M), the divergence K(ν, µ). We can see that

K(ν, µ) = α(ν − µ)π(R) + K(ν, µ)−K(µ, µ).

Now, let us introduce the conditional posterior distribution

π̂ = πexp(−γr)

and let us decompose

(ν − µ)
[
π(R)

]
= ν

[
π(R)− π̂(R)

]
+ (ν − µ)

[
π̂(R)

]
+ µ

[
π̂(R)− π(R)

]
.

Starting from the exponential inequality

P

[
µ
[
π ⊗ π

]
exp
{
−N log

[
1− tanh( γN )R′

]
− γr′ −N log

[
cosh( γN )

]
m′
}]
≤ 1,

and reasoning in the same way that led to Theorem 2.1.1 (page 71) in the
simple case when we take in this theorem λ = γ, we get with P probability
at least 1− ε, that

−N log
{

1− tanh( γN )ν(π − π̂)(R)
}

+ βν(π − π̂)(R)
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≤ ν
[
log
{
π̂
[
exp
{
N log

[
cosh( γN )π̂(m′)

}]}]
+ K(ν, µ)− log(ε).

−N log
{

1− tanh( γN )µ(π̂ − π)(R)
}
− βµ(π̂ − π)(R)

≤ µ
[
log
{
π̂
[
exp
{
N log

[
cosh( γN )π̂(m′)

}]}]
− log(ε).

In the meantime, using Theorem 2.2.1 (page 88) and Corollary 2.3.5
above, we see that with P probability at least 1 − 2ε, for any conditional
posterior distribution ρ : Ω×M →M1

+(Θ),

−N log
{

1− tanh( λN )(ν − µ)ρ(R)
}
≤ λ(ν − µ)ρ(r)

+N log
[
cosh( λN )

]
(νρ)⊗ (µρ)(m′) + (ν + µ)K(ρ, π̃) + K(ν, µ)− log(ε)

≤ λ(ν − µ)ρ(r) +N log
[
cosh( λN )

]
(νρ)⊗ (µρ)(m′) + K(ν, µ)− log(ε)

+
(

1− γ
λ

)−1
(ν + µ)

{
K
(
ρ, π̂
)

+ log
{
π̂
[
exp
{
N γ

λ log
[
cosh( λN )

]
ρ(m′)

}]}}
+
(
λ
γ − 1

)−1[
K(ν, µ)− 2 log(ε)

]
.

Putting all this together, we see that with P probability at least 1 − 3ε,
for any posterior distribution ν ∈M1

+(M),[
1− α

N tanh( γN ) + β
− α

N tanh( λN )
(
1− γ

λ

)]K(ν, µ) ≤

α
[
N tanh( γN ) + β

]−1
{
ν

[
log
{
π̂
[
exp
{
N log

[
cosh( γN )

]
π̂(m′)

}]}]
− log(ε)

}
+α
[
N tanh( γN )−β

]−1
{
µ

[
log
{
π̂
[
exp
{
N log

[
cosh( γN )

]
π̂(m′)

}]}]
− log(ε)

}
+ α

[
N tanh( λN )

]−1

{
λ(ν − µ)π̂(r) +N log

[
cosh( λN )

]
(νπ̂)⊗ (µπ̂)(m′)

+
(

1− γ
λ

)−1
(ν + µ)

[
log
{
π̂
[
exp
{
N γ

λ log
[
cosh( λN )

]
π̂(m′)

}]}]
−

1 + γ
λ

1− γ
λ

log(ε)

}
+ K(ν, µ)−K(µ, µ).

Replacing in the right-hand side of this inequality the unobserved prior
distribution µ with the worst possible posterior distribution, we obtain

Theorem 2.3.6. For any positive real constants α, β, γ and λ, using the
notation,

π = πexp(−βR),
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µ = µexp[−απ(R)],

π̂ = πexp(−γr),

µ̂ = µexp[−α λ
N

tanh( λ
N

)−1bπ(r)],

with P probability at least 1 − ε, for any posterior distribution ν : Ω →
M1

+(M),[
1− α

N tanh( γN ) + β
− α

N tanh( λN )
(
1− γ

λ

)]K(ν, µ) ≤ K(ν, µ̂)

+
α

N tanh( γN ) + β

{
ν

[
log
{
π̂
[
exp
{
N log

[
cosh( γN )

]
π̂(m′)

}]}]}
+

α

N tanh( λN )(1− γ
λ)

{
ν

[
log
{
π̂
[
exp
{
N γ

λ log
[
cosh( λN )

]
π̂(m′)

}]}]}
+ log

{
µ̂

[[
π̂
{

exp
[
N log

[
cosh( γN )

]
π̂(m′)

]}] α
N tanh(

γ
N

)−β

×
[
π̂
{

exp
[
N γ

λ log
[
cosh( λN )

]
π̂(m′)

]}] α

N tanh( λ
N

)(1− γ
λ

)

× exp
[
α log[cosh( λN )]

tanh( λN )
(νπ̂)⊗ π̂(m′)

]]}

+
[

1
N tanh( γN ) + β

+
1

N tanh( γN )− β
+

1 + γ
λ

N tanh( λN )
(
1− γ

λ

)] log
(

3
ε

)
.

This result is satisfactory, but in the same time hints at some possible
improvement in the choice of the localized prior µ, which is here somewhat
lacking a variance term. We will consider in the remainder of this section
the use of

µ = µexp[−απ(R)−ξeπ⊗eπ(M ′), (2.38)

where ξ is some positive real constant and π̃ = π
exp(−eβR)

is some appropriate

conditional prior distribution with positive real parameter β̃. With this new
choice

K(ν, µ) = α(ν − µ)π(R) + ξ(ν − µ)(π̃ ⊗ π̃)(M ′) + K(ν, µ)−K(µ, µ).

We already know how to deal with the first factor α(ν − µ)π(R), since
the computations we made to give it an empirical upper bound were valid
for any choice of the localized prior distribution µ. Let us now deal with
ξ(ν−µ)(π̃⊗π̃)(M ′). Since m′(θ, θ′) is a sum of independent Bernoulli random
variables, we can easily generalize the result of Theorem 1.1.4 (page 17) to
prove that with P probability at least 1− ε

N
[
1− exp(− ζ

N )
]
ν(π̃ ⊗ π̃)(M ′)
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≤ ζΦ ζ
N

[
ν(π̃ ⊗ π̃)(M ′)

]
≤ ζν(π̃ ⊗ π̃)(m′) + K(ν, µ)− log(ε).

In the same way, with P probability at least 1− ε,

−N
[
exp( ζN )− 1

]
µ(π̃ ⊗ π̃)(M ′)
≤ −ζΦ− ζ

N

[
µ(π̃ ⊗ π̃)(M ′)

]
≤ −ζµ(π̃ ⊗ π̃)(m′)− log(ε).

We would like now to replace (π̃ ⊗ π̃)(m′) with an empirical quantity. In
order to do this, we will use an entropy bound. Indeed for any conditional
posterior distribution ρ : Ω×M →M1

+(Θ),

ν
[
K(ρ, π̃)

]
= β̃ν(ρ− π̃)(R) + ν

[
K(ρ, π)−K(π̃, π)

]
≤ β̃

N tanh( γN )

{
γν(ρ− π̃)(r) +N log

[
cosh( γN )

]
ν(ρ⊗ π̃)(m′)

+ K(ν, µ) + ν
[
K(ρ, π̃)

]
− log(ε)

}
+ ν
[
K(ρ, π)−K(π̃, π)

]
.

Thus choosing β̃ = N tanh( γN ),

γν(π̃ − ρ)(r) + ν
[
K(π̃, π)−K(ρ, π)

]
≤ N log

[
cosh( γN )

]
ν(ρ⊗ π̃)(m′) + K(ν, µ)− log(ε).

Choosing ρ = π̂, we get

ν
[
K(π̃, π̂)

]
≤ N log

[
cosh( γN )

]
ν(π̂ ⊗ π̃)(m′) + K(ν, µ)− log(ε).

This implies that

ξν(π̂ ⊗ π̃)(m′) = ν
{
π̃
[
ξπ̂(m′)

]
−K(π̃, π̂)

}
+ ν
[
K(π̃, π̂)

]
≤ ν

{
log
[
π̂
{

exp
[
ξπ̂(m′)

]}]}
+N log

[
cosh( γN )

]
ν(π̂ ⊗ π̃)(m′) + K(ν, µ)− log(ε).

Thus{
ξ −N log

[
cosh( γN )

]}
ν(π̂ ⊗ π̃)(m′)

≤ ν
{

log
[
π̂
{

exp
[
ξπ̂(m′)

]}]}
+ K(ν, µ)− log(ε)

and

ν
[
K(π̃, π̂)

]
≤
(

ξ

N log[cosh( γN )]
− 1
)−1[

ν
{

log
[
π̂
{

exp
[
ξπ̂(m′)

]}]}
+ K(ν, µ)− log(ε)

]
+ K(ν, µ)− log(ε).
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Taking for simplicity ξ = 2N log
[
cosh( γN )

]
and noticing that

2N log
[
cosh( γN )

]
= −N log

(
1− eβ2

N2

)
,

we get

Theorem 2.3.7. Let us put π̃ = π
exp(−eβR)

and π̂ = πexp(−γr), where γ

is some arbitrary positive real constant and β̃ = N tanh( γN ), so that γ =
N
2 log

(
1+

eβ
N

1− eβ
N

)
. With P probability at least 1− ε,

ν
[
K(π̃, π̂)

]
≤ ν

[
log
{
π̂
[
exp
{

2N log
[
cosh( γN )

]
π̂(m′)

}]}]
+2
[
K(ν, µ)−log(ε)

]
.

As a consequence

ζν(π̃ ⊗ π̃)(m′) = ζν(π̃ ⊗ π̃)(m′)− ν
[
K(π̃ ⊗ π̃, π̂ ⊗ π̂)

]
+ 2ν

[
K(π̃, π̂)

]
≤ ν

{
log
[
π̂ ⊗ π̂

[
exp(ζm′)

]]}
+ 2ν

[
log
{
π̂
[
exp
{

2N log
[
cosh( γN )

]
π̂(m′)

}]}]
+ 4
[
K(ν, µ)− log(ε)

]
.

Let us take for the sake of simplicity ζ = 2N log
[
cosh( γN )

]
, to get

ζν(π̃ ⊗ π̃)(m′) ≤ 3ν
{

log
[
π̂ ⊗ π̂

[
exp(ζm′)

]]}
+ 4
[
K(ν, µ)− log(ε)

]
.

This proves

Proposition 2.3.8. Let us consider some arbitrary prior distribution µ ∈
M1

+(M) and some arbitrary conditional prior distribution π : M →M1
+(Θ).

Let β̃ < N be some positive real constant. Let us put π̃ = π
exp(−eβR)

and π̂ =

πexp(−γr), with β̃ = N tanh( γN ). Moreover let us put ζ = 2N log
[
cosh( γN )

]
.

With P probability at least 1−2ε, for any posterior distribution ν ∈M1
+(M),

ν(π̃ ⊗ π̃)(M ′) ≤
3ν
{

log
[
π̂ ⊗ π̂

[
exp(ζm′)

]]}
+ 5
[
K(ν, µ)− log(ε)

]
N
[
1− exp(− ζ

N )
]

=
1

N tanh( γN )2

{
3ν
[
log
{
π̂ ⊗ π̂

[
exp
{

2N log
[
cosh( γN )

]
m′
}]}]

+ 5
[
K(ν, µ)− log(ε)

]}
.

In the same way,

− ζµ(π̃ ⊗ π̃)(m′) ≤ µ
{

log
[
π̂ ⊗ π̂

[
exp(−ζm′)

]]}



2.3. Two step localization 131

+ 2µ
[
log
{
π̂
[
exp
{

2N log
[
cosh( γN )

]
π̂(m′)

}]}]
− 4 log(ε)

and thus

− µ(π̃ ⊗ π̃)(M ′) ≤ 1

N
[
exp( ζN )− 1

]{µ{log
[
π̂ ⊗ π̂

[
exp(−ζm′)

]]}
+ 2µ

[
log
{
π̂
[
exp
{

2N log
[
cosh( γN )

]
π̂(m′)

}]}]
− 5 log(ε)

}
.

Here we have purposely kept ζ as an arbitrary positive real constant, to be
tuned later (in order to be able to strengthen more or less the compensation
of variance terms).

We are now properly equipped to estimate the divergence with respect to
µ, the choice of prior distribution made in equation (2.38, page 128). Indeed
we can now write[

1− α

N tanh( γN ) + β
− α

N tanh( λN )
(
1− γ

λ

) − 5ξ
N tanh( γN )2

]
K(ν, µ)

≤ α

N tanh( γN ) + β

{
ν

[
log
{
π̂
[
exp
{
N log

[
cosh( γN )

]
π̂(m′)

}]}]
− log(ε)

}
+

α

N tanh( γN )− β

{
µ

[
log
{
π̂
[
exp
{
N log

[
cosh( γN )

]
π̂(m′)

}]}]
− log(ε)

}
+

α

N tanh( λN )

{
λ(ν − µ)π̂(r) +N log

[
cosh( λN )

]
(νπ̂)⊗ (µπ̂)(m′)

+
(

1− γ
λ

)−1
(ν + µ)

[
log
{
π̂
[
exp
{
N γ

λ log
[
cosh( λN )

]
π̂(m′)

}]}]
−

1 + γ
N

1− γ
N

log(ε)

}

+
ξ

N tanh( γN )2

{
3ν
[
log
{
π̂ ⊗ π̂

[
exp
{

2N log
[
cosh( γN )

]
m′
}]}]

− 5 log(ε)
}

+
ξ

N
[
exp( ζN )− 1

]{µ{log
[
π̂ ⊗ π̂

[
exp(−ζm′)

]]}
+ 2µ

[
log
{
π̂
[
exp
{

2N log
[
cosh( γN )

]
π̂(m′)

}]}]
− 5 log(ε)

}
.

+ K(ν, µ)−K(µ, µ).

It remains now only to replace in the right-hand side of this inequality µ
with the worst possible posterior distribution to obtain

Theorem 2.3.9. Let λ > γ > β, ζ, α and ξ be arbitrary positive real
constants. Let us use the notation π = πexp(−βR), π̃ = πexp(−N tanh( γ

N
)R),
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π̂ = πexp(−γr), µ = µexp[−απ(R)−ξeπ⊗eπ(M ′)] and let us define the posterior
distribution µ̂ : Ω→M1

+(M) by

dµ̂

dµ
∼ exp

{
− αλ

N tanh( λN )
π̂(r)

+
ξ

N
[
exp( ζN )− 1

] log
{
π̂ ⊗ π̂

[
exp(−ζm′)

]}}
.

Let us assume moreover that

α

N tanh( γN ) + β
+

α

N tanh( λN )(1− γ
λ)

+
5ξ

N tanh( γN )2
< 1.

With P probability at least 1 − ε, for any posterior distribution ν : Ω →
M1

+(M),

K(ν, µ) ≤
[
1− α

N tanh( γN ) + β

− α

N tanh( λN )
(
1− γ

λ

) − 5ξ
N tanh( γN )2

]−1
{

K(ν, µ̂)

+
α

N tanh( γN ) + β

{
ν

[
log
{
π̂
[
exp
{
N log

[
cosh( γN )

]
π̂(m′)

}]}]}
+

α

N tanh( λN )
(
1− γ

λ

){ν[log
{
π̂
[
exp
{
N γ

λ log
[
cosh( λN )

]
π̂(m′)

}]}]}
+

ξ

N tanh( γN )2

{
3ν
[
log
{
π̂ ⊗ π̂

[
exp
{

2N log
[
cosh( γN )

]
m′
}]}]}

+
ξ

N
[
exp( ζN )− 1

]{ν{log
[
π̂ ⊗ π̂

[
exp(−ζm′)

]]}}
+ log

{
µ̂

[{
π̂
[
exp
{
N log

[
cosh( γN )

]
π̂(m′)

}]} α
N tanh(

γ
N

)−β

×
{
π̂
[
exp
{
N γ

λ log
[
cosh( λN )

]
π̂(m′)

}]} α

N tanh( λ
N

)

(
1− γ

λ

)
×
{
π̂
[
exp
{

2N log
[
cosh( γN )

]
π̂(m′)

}]} 2ξ

N

[
exp(

ζ
N

)−1

]
× exp

{
N log

[
cosh( λN )

][
(νπ̂)⊗ π̂

]
(m′)

}]}
+

[
α

N tanh( γN ) + β
+

α

N tanh( γN )− β
+

2α
(
1 + γ

N

)
N tanh( λN )

(
1− γ

λ

)
+

5ξ
N tanh( γN )2

+
5ξ

N
[
exp( ζN )− 1

]] log
(

5
ε

)}
.
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The interest of this theorem lies in the presence of a variance term in the
localized posterior distribution µ̂, which with a suitable choice of parameters
seems to be an interesting option in the case when there are nested models:
in this situation there may be a need to prevent integration with respect to
µ̂ in the right-hand side to put weight on wild oversized models with large
variance terms. Moreover, the right-hand side being empirical, parameters
can be, as usual, optimized from data using a union bound on a grid of
candidate values.

If one is only interested in the general shape of the result, a simplified
inequality as the one below may suffice:

Corollary 2.3.10. For any positive real constants λ > γ > β, ζ, α and
ξ, let us use the same notation as in Theorem 2.3.9 (page 131). Let us put
moreover

A1 =
α

N tanh( γN ) + β
+

α

N tanh( λN )
(
1− γ

λ

) +
5ξ

N tanh( γN )2
,

A2 =
α

N tanh( γN ) + β
+

α

N tanh( λN )
(
1− γ

λ

) +
3ξ

N tanh( γN )2

A3 =
ξ

N
[
exp
( ζ
N

)
− 1
]

A4 =
α

N tanh( γN )− β
+

α

N tanh( λN )(1− γ
λ)

+
2ξ

N [exp( ζN )− 1]
,

A5 =
α

N tanh( γN ) + β
+

α

N tanh( γN )− β
+

2α
(
1 + γ

N

)
N tanh( λN )

(
1− γ

λ

)
+

5ξ
N tanh( γN )2

+
5ξ

N
[
exp( ζN )− 1

] ,
C1 = 2N log

[
cosh

(
λ
N

)]
,

C2 = N log
[
cosh

(
λ
N

)]
.

Let us assume that A1 < 1. With P probability at least 1−ε, for any posterior
distribution ν : Ω→M1

+(M),

K(ν, µ) ≤ K(ν, α, β, γ, λ, ξ, ζ, ε) def=
(
1−A1

)−1

{
K(ν, µ̂)

+A2ν
[
log
(
π̂ ⊗ π̂

[
exp
(
C1m

′)])]+A3ν
[
log
(
π̂ ⊗ π̂

[
exp
(
−ζm′

)])]
+ log

{
µ̂

[[
π̂
(

exp
[
C1π̂(m′)

])]A4

exp
(
C2

[
(νπ̂)⊗ π̂

]
(m′)

)]}
+A5 log

(
5
ε

)}
.

Putting this corollary together with Corollary 2.3.5 (page 125), we obtain
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Theorem 2.3.11. Let us consider the notation introduced in Corollary 2.3.5
(page 125) and in Theorem 2.3.9 (page 131) and its Corollary 2.3.10 (page
133). Let us consider real positive parameters λ, γ′1 < λ′1 and γ′2 < λ′2. Let
us consider also two sets of parameters αi, βi, γi, λi, ξi, ζi,where i = 1, 2, both
satisfying the conditions stated in Corollary 2.3.10 (page 133). With P prob-
ability at least 1 − ε, for any posterior distributions ν1, ν2 : Ω → M1

+(M),
any conditional posterior distributions ρ1, ρ2 : Ω×M →M1

+

(
Θ
)
,

−N log
{

1− tanh
(
λ
N

)(
ν1ρ1 − ν2ρ2

)
(R)
}
≤ λ

(
ν1ρ1 − ν2ρ2

)
(r)

+N log
[
cosh

(
λ
N

)](
ν1ρ1

)
⊗
(
ν2ρ2

)(
m′
)

+K ′
(
ν1, ρ1, γ

′
1, λ
′
1,

ε
5

)
+K ′

(
ν2, ρ2, γ

′
2, λ
′
2,

ε
5

)
+

1

1− γ′1
λ′1

K
(
ν1, α1, β1, γ1, λ1, ξ1, ζ1,

ε
5

)
+

1

1− γ′2
λ′2

K
(
ν2, α2, β2, γ2, λ2, ξ2, ζ2,

ε
5

)
− log

(
ε
5

)
.

This theorem provides, using a union bound argument to further optimize
the parameters, an empirical bound for ν1ρ1(R)− ν2ρ2(R), which can serve
to build a selection algorithm exactly in the same way as what was done in
Theorem 2.2.4 (page 93). This represents the highest degree of sophistication
that we will achieve in this monograph, as far as model selection is concerned:
this theorem shows that it is indeed possible to derive a selection scheme in
which localization is performed in two steps and in which the localization of
the model selection itself, as opposed to the localization of the estimation
in each model, includes a variance term as well as a bias term, so that it
should be possible to localize the choice of nested models, something that
would not have been feasible with the localization techniques exposed in
the previous sections of this study. We should point out however that more
sophisticated does not necessarily mean more efficient : as the reader may
have noticed, sophistication comes at a price, in terms of the complexity of
the estimation schemes, with some possible loss of accuracy in the constants
that can mar the benefits of using an asymptotically more efficient method
for small sample sizes.

We will do the hurried reader a favour: we will not launch into a study
of the theoretical properties of this selection algorithm, although it is clear
that all the tools needed are at hand !

We would like as a conclusion to this chapter, to put forward a simple
idea: this approach of model selection revolves around entropy estimates
concerned with the divergence of posterior distributions with respect to lo-
calized prior distributions. Moreover, this localization of the prior distribu-
tion is more effectively done in several steps in some situations, and it is
worth mentioning that these situations include the typical case of selection
from a family of parametric models. Finally, the whole story relies upon es-
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timating the relative generalization error rate of one posterior distribution
with respect to some local prior distribution as well as with respect to an-
other posterior distribution, because these relative rates can be estimated
more accurately than absolute generalization error rates, at least as soon
as no classification model of reasonable size provides a good match to the
training sample, meaning that the classification problem is either difficult
or noisy.
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Chapter 3

Transductive PAC-Bayesian
learning

3.1. Basic inequalities

3.1.1. The transductive setting. In this chapter the observed sample

(Xi, Yi)Ni=1 will be supplemented with a test or shadow sample (Xi, Yi)
(k+1)N
i=N+1 .

This point of view, called transductive classification, has been introduced by
V. Vapnik. It may be justified in different ways.

On the practical side, one interest of the transductive setting is that it is
often a lot easier to collect examples than it is to label them, so that it is not
unrealistic to assume that we indeed have two training samples, one labelled
and one unlabelled. It also covers the case when a batch of patterns is to be
classified and we are allowed to observe the whole batch before issuing the
classification.

On the mathematical side, considering a shadow sample proves techni-
cally fruitful. Indeed, when introducing the Vapnik–Cervonenkis entropy
and Vapnik–Cervonenkis dimension concepts, as well as when dealing with
compression schemes, albeit the inductive setting is our final concern, the
transductive setting is a useful detour. In this second scenario, intermediate
technical results involving the shadow sample are integrated with respect to
unobserved random variables in a second stage of the proofs.

Let us describe now the changes to be made to previous notation to adapt
them to the transductive setting. The distribution P will be a probability
measure on the canonical space Ω = (X×Y)(k+1)N , and (Xi, Yi)

(k+1)N
i=1 will be

the canonical process on this space (that is the coordinate process). Unless
explicitly mentioned, the parameter k indicating the size of the shadow
sample will remain fixed. Assuming the shadow sample size is a multiple
of the training sample size is convenient without significantly restricting
generality. For a while, we will use a weaker assumption than independence,
assuming that P is partially exchangeable, since this is all we need in the
proofs.

137
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Definition 3.1.1. For i = 1, . . . , N , let τi : Ω → Ω be defined for any
ω = (ωj)

(k+1)N
j=1 ∈ Ω by
τi(ω)i+jN = ωi+(j−1)N , j = 1, . . . , k,
τi(ω)i = ωi+kN ,

and τi(ω)m+jN = ωm+jN , m 6= i,m = 1, . . . , N, j = 0, . . . k.

Clearly, if we arrange the (k+1)N samples in a N×(k+1) array, τi performs
a circular permutation of k+1 entries on the ith row, leaving the other rows
unchanged. Moreover, all the circular permutations of the ith row have the
form τ ji , j ranging from 0 to k.

The probability distribution P is said to be partially exchangeable if for
any i = 1, . . . , N , P ◦ τ−1

i = P.
This means equivalently that for any bounded measurable function h :

Ω→ R, P(h ◦ τi) = P(h).
In the same way a function h defined on Ω will be said to be partially

exchangeable if h ◦ τi = h for any i = 1, . . . , N . Accordingly a posterior
distribution ρ : Ω → M1

+(Θ,T) will be said to be partially exchangeable
when ρ(ω,A) = ρ

[
τi(ω), A

]
, for any ω ∈ Ω, any i = 1, . . . , N and any A ∈ T.

For any bounded measurable function h, let us define Ti(h) = 1
k+1

∑k
j=0 h ◦

τ ji . Let T (h) = TN ◦ · · · ◦ T1(h). For any partially exchangeable probability
distribution P, and for any bounded measurable function h, P

[
T (h)

]
=

P(h). Let us put

σi(θ) = 1
[
fθ(Xi) 6= Yi

]
, indicating the success or failure of fθ

to predict Yi from Xi,

r1(θ) =
1
N

N∑
i=1

σi(θ), the empirical error rate of fθ
on the observed sample,

r2(θ) =
1
kN

(k+1)N∑
i=N+1

σi(θ), the error rate of fθ on the shadow sample,

r(θ) =
r1(θ) + kr2(θ)

k + 1
=

1
(k + 1)N

(k+1)N∑
i=1

σi(θ), the global error
rate of fθ,

Ri(θ) = P
[
fθ(Xi) 6= Yi

]
, the expected error

rate of fθ on the ith input,

R(θ) =
1
N

N∑
i=1

Ri(θ) = P
[
r1(θ)

]
= P

[
r2(θ)

]
, the average expected

error rate of fθ on all inputs.

We will allow for posterior distributions ρ : Ω → M1
+(Θ) depending on the

shadow sample. The most interesting ones will anyhow be independent of
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the shadow labels YN+1, . . . , Y(k+1)N . We will be interested in the conditional
expected error rate of the randomized classification rule described by ρ on
the shadow sample, given the observed sample, that is, P

[
ρ(r2)|(Xi, Yi)Ni=1

]
.

This is a natural extension of the notion of generalization error rate: this is
indeed the error rate to be expected when the randomized classification rule
described by the posterior distribution ρ is applied to the shadow sample
(which should in this case more purposefully be called the test sample).

To see the connection with the previously defined generalization error
rate, let us comment on the case when P is invariant by any permutation of
any row, meaning that

P
[
h(ω ◦ s)

]
= P

[
h(ω)

]
for all s ∈ S({i+ jN ; j = 0, . . . , k})

and all i = 1, . . . , N , where S(A) is the set of permutations of A, ex-
tended to {1, . . . , (k + 1)N} so as to be the identity outside of A. In other
words, P is assumed to be invariant under any permutation which keeps
the rows unchanged. In this case, if ρ is invariant by any permutation of
any row of the shadow sample, meaning that ρ(ω ◦ s) = ρ(ω) ∈ M1

+(Θ),
s ∈ S({i + jN ; j = 1, . . . , k}), i = 1, . . . , N , then P

[
ρ(r2)|(Xi, Yi)Ni=1

]
=

1
N

∑N
i=1P

[
ρ(σi+N )|(Xi, Yi)Ni=1

]
, meaning that the expectation can be taken

on a restricted shadow sample of the same size as the observed sample. If
moreover the rows are equidistributed, meaning that their marginal distri-
butions are equal, then

P
[
ρ(r2)|(Xi, Yi)Ni=1

]
= P

[
ρ(σN+1)|(Xi, Yi)Ni=1

]
.

This means that under these quite commonly fulfilled assumptions, the ex-
pectation can be taken on a single new object to be classified, our study
thus covers the case when only one of the patterns from the shadow sam-
ple is to be labelled and one is interested in the expected error rate of this
single labelling. Of course, in the case when P is i.i.d. and ρ depends only
on the training sample (Xi, Yi)Ni=1, we fall back on the usual criterion of
performance P

[
ρ(r2)|(Zi)Ni=1

]
= ρ(R) = ρ(R1).

3.1.2. Absolute bound. Using an obvious factorization, and considering
for the moment a fixed value of θ and any partially exchangeable positive real
measurable function λ : Ω→ R+, we can compute the log-Laplace transform
of r1 under T , which acts like a conditional probability distribution:

log
{
T
[
exp(−λr1)

]}
=

N∑
i=1

log
{
Ti
[
exp(− λ

N σi)
]}

≤ N log
{

1
N

N∑
i=1

Ti

[
exp
(
− λ
N σi

)]}
= −λΦ λ

N
(r),

where the function Φ λ
N

was defined by equation (1.1, page 15). Remarking

that T
{

exp
[
λ
[
Φ λ
N

(r)− r1

]]}
= exp

[
λΦ λ

N
(r)
]
T
[
exp(−λr1)

]
we obtain
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Lemma 3.1.1. For any θ ∈ Θ and any partially exchangeable positive real
measurable function λ : Ω→ R+,

T
{

exp
[
λ
{

Φ λ
N

[
r(θ)

]
− r1(θ)

}]}
≤ 1.

We deduce from this lemma a result analogous to the inductive case:

Theorem 3.1.2. For any partially exchangeable positive real measurable
function λ : Ω×Θ→ R+, for any partially exchangeable posterior distribu-
tion π : Ω→M1

+(Θ),

P

{
exp
[

sup
ρ∈M1

+(Θ)

ρ
[
λ
[
Φ λ
N

(r)− r1

]]
−K(ρ, π)

]}
≤ 1.

The proof is deduced from the previous lemma, using the fact that π is
partially exchangeable:

P

{
exp
[

sup
ρ∈M1

+(Θ)

ρ
[
λ
[
Φ λ
N

(r)− r1

]]
−K(ρ, π)

]}
= P

{
π
{

exp
[
λ
[
Φ λ
N

(r)− r1

]]}}
= P

{
Tπ
{

exp
[
λ
[
Φ λ
N

(r)− r1

]]}}
= P

{
π
{
T exp

[
λ
[
Φ λ
N

(r)− r1

]]}}
≤ 1.

3.1.3. Relative bounds. Introducing in the same way

m′(θ, θ′) =
1
N

N∑
i=1

∣∣∣1[fθ(Xi) 6= Yi
]
− 1

[
fθ′(Xi) 6= Yi

]∣∣∣
and m(θ, θ′) =

1
(k + 1)N

(k+1)N∑
i=1

∣∣∣1[fθ(Xi) 6= Yi
]
− 1

[
fθ′(Xi) 6= Yi

]∣∣∣,
we could prove along the same line of reasoning

Theorem 3.1.3. For any real parameter λ, any θ̃ ∈ Θ, any partially ex-
changeable posterior distribution π : Ω→M1

+(Θ),

P

{
exp
[

sup
ρ∈M1

+(Θ)

λ
[
ρ
{

Ψ λ
N

[
r(·)− r(θ̃),m(·, θ̃)

]}
−
[
ρ(r1)− r1(θ̃)

]]
−K(ρ, π)

]}
≤ 1,

where the function Ψ λ
N

was defined by equation (1.21, page 51).
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Theorem 3.1.4. For any real constant γ, for any θ̃ ∈ Θ, for any partially
exchangeable posterior distribution π : Ω→M1

+(Θ),

P

{
exp

[
sup

ρ∈M1
+(Θ)

{
−Nρ

{
log
[
1− tanh

( γ
N

)[
r(·)− r(θ̃)

]]}
− γ
[
ρ(r1)− r1(θ̃)

]
−N log

[
cosh

( γ
N

)]
ρ
[
m′(·, θ̃)

]
−K(ρ, π)

}]}
≤ 1.

This last theorem can be generalized to give

Theorem 3.1.5. For any real constant γ, for any partially exchangeable
posterior distributions π1, π2 : Ω→M1

+(Θ),

P

{
exp

[
sup

ρ1,ρ2∈M1
+(Θ)

{
−N log

{
1− tanh

( γ
N

)[
ρ1(r)− ρ2(r)

]}
− γ
[
ρ1(r1)− ρ2(r1)

]
−N log

[
cosh

( γ
N

)]
ρ1 ⊗ ρ2(m′)

−K(ρ1, π
1)−K(ρ2, π

2)
}]}

≤ 1.

To conclude this section, we see that the basic theorems of transductive
PAC-Bayesian classification have exactly the same form as the basic inequal-
ities of inductive classification, Theorems 1.1.4 (page 17), 1.4.2 (page 52) and
1.4.3 (page 53) with R(θ) replaced with r(θ), r(θ) replaced with r1(θ) and
M ′(θ, θ̃) replaced with m(θ, θ̃).

Thus all the results of the first two chapters remain true under the hy-
potheses of transductive classification, with R(θ) replaced with r(θ), r(θ)
replaced with r1(θ) and M ′(θ, θ̃ ) replaced with m(θ, θ̃).

Consequently, in the case when the unlabelled shadow sample is observed,
it is possible to improve on the Vapnik bounds to be discussed hereafter by
using an explicit partially exchangeable posterior distribution π and resorting
to localized or to relative bounds (in the case at least of unlimited computing
resources, which of course may still be unrealistic in many real world situa-
tions, and with the caveat, to be recalled in the conclusion of this study, that
for small sample sizes and comparatively complex classification models, the
improvement may not be so decisive).

Let us notice also that the transductive setting when experimentally avail-
able, has the advantage that

d(θ, θ′) =
1

(k + 1)N

(k+1)N∑
i=1

1
[
fθ′(Xi) 6= fθ(Xi)

]
≥ m(θ, θ′) ≥ r(θ)− r(θ′), θ, θ′ ∈ Θ,
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is observable in this context, providing an empirical upper bound for the
difference r(θ̂)− ρ(r) for any non-randomized estimator θ̂ and any posterior
distribution ρ, namely

r(θ̂) ≤ ρ(r) + ρ
[
d(·, θ̂)

]
.

Thus in the setting of transductive statistical experiments, the PAC-Bayesian
framework provides fully empirical bounds for the error rate of non-randomized
estimators θ̂ : Ω→ Θ, even when using a non-atomic prior π (or more gen-
erally a non-atomic partially exchangeable posterior distribution π), even
when Θ is not a vector space and even when θ 7→ R(θ) cannot be proved to
be convex on the support of some useful posterior distribution ρ.

3.2. Vapnik bounds for transductive classification

In this section, we will stick to plain unlocalized non-relative bounds. As
we have already mentioned, (and as it was put forward by Vapnik himself in
his seminal works), these bounds are not always superseded by the asymp-
totically better ones when the sample is of small size: they deserve all our
attention for this reason. We will start with the general case of a shadow
sample of arbitrary size. We will then discuss the case of a shadow sample
of equal size to the training set and the case of a fully exchangeable sam-
ple distribution, showing how they can be taken advantage of to sharpen
inequalities.

3.2.1. With a shadow sample of arbitrary size. The great thing
with the transductive setting is that we are manipulating only r1 and r
which can take only a finite number of values and therefore are piecewise
constant on Θ. This makes it possible to derive inequalities that will hold
uniformly for any value of the parameter θ ∈ Θ. To this purpose, let us
consider for any value θ ∈ Θ of the parameter the subset ∆(θ) ⊂ Θ of
parameters θ′ such that the classification rule fθ′ answers the same on the
extended sample (Xi)

(k+1)N
i=1 as fθ. Namely, let us put for any θ ∈ Θ

∆(θ) =
{
θ′ ∈ Θ; fθ′(Xi) = fθ(Xi), i = 1, . . . , (k + 1)N

}
.

We see immediately that ∆(θ) is an exchangeable parameter subset on which
r1 and r2 and therefore also r take constant values. Thus for any θ ∈ Θ we
may consider the posterior ρθ defined by

dρθ
dπ

(θ′) = 1
[
θ′ ∈ ∆(θ)

]
π
[
∆(θ)

]−1
,

and use the fact that ρθ(r1) = r1(θ) and ρθ(r) = r(θ), to prove that
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Lemma 3.2.1. For any partially exchangeable positive real measurable func-
tion λ : Ω×Θ→ R such that

λ(ω, θ′) = λ(ω, θ), θ ∈ Θ, θ′ ∈ ∆(θ), ω ∈ Ω, (3.1)

and any partially exchangeable posterior distribution π : Ω → M1
+(Θ), with

P probability at least 1− ε, for any θ ∈ Θ,

Φ λ
N

[
r(θ)

]
+

log
{
επ
[
∆(θ)

]}
λ(θ)

≤ r1(θ).

We can then remark that for any value of λ independent of ω, the left-
hand side of the previous inequality is a partially exchangeable function of
ω ∈ Ω. Thus this left-hand side is maximized by some partially exchangeable
function λ, namely

arg max
λ

{
Φ λ
N

[
r(θ)

]
+

log
{
επ
[
∆(θ)

]}
λ

}

is partially exchangeable as depending only on partially exchangeable quan-
tities. Moreover this choice of λ(ω, θ) satisfies also condition (3.1) stated in
the previous lemma of being constant on ∆(θ), proving

Lemma 3.2.2. For any partially exchangeable posterior distribution π : Ω→
M1

+(Θ), with P probability at least 1− ε, for any θ ∈ Θ and any λ ∈ R+,

Φ λ
N

[
r(θ)

]
+

log
{
επ
[
∆(θ)

]}
λ

≤ r1(θ).

Writing r = r1+kr2
k+1 and rearranging terms we obtain

Theorem 3.2.3. For any partially exchangeable posterior distribution π :
Ω→M1

+(Θ), with P probability at least 1− ε, for any θ ∈ Θ,

r2(θ) ≤ k + 1
k

inf
λ∈R+

1− exp

(
− λ
N
r1(θ) +

log
{
επ
[
∆(θ)

]}
N

)
1− exp

(
− λ
N

) − r1(θ)
k

.

If we have a set of binary classification rules {fθ; θ ∈ Θ} whose Vapnik–
Cervonenkis dimension is not greater than h, we can choose π such that

π
[
∆(θ)

]
is independent of θ and not less than

(
h

e(k + 1)N

)h
, as will be

proved further on in Theorem 4.2.2 (page 174).
Another important setting where the complexity term − log

{
π
[
∆(θ)

]}
can easily be controlled is the case of compression schemes, introduced by
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Little et al. (1986). It goes as follows: we are given for each labelled sub-
sample (Xi, Yi)i∈J , J ⊂ {1, . . . , N}, an estimator of the parameter

θ̂
[
(Xi, Yi)i∈J

]
= θ̂J , J ⊂ {1, . . . , N}, |J | ≤ h,

where

θ̂ :
N⊔
k=1

(
X× Y

)k → Θ

is an exchangeable function providing estimators for sub-samples of arbitrary
size. Let us assume that θ̂ is exchangeable, meaning that for any k = 1, . . . , N
and any permutation σ of {1, . . . , k}

θ̂
[
(xi, yi)ki=1

]
= θ̂
[
(xσ(i), yσ(i))

k
i=1

]
, (xi, yi)ki=1 ∈

(
X× Y

)k
.

In this situation, we can introduce the exchangeable subset{
θ̂J ; J ⊂ {1, . . . , (k + 1)N}, |J | ≤ h

}
⊂ Θ,

which is seen to contain at most

h∑
j=0

(
(k + 1)N

j

)
≤
(
e(k + 1)N

h

)h
classification rules — as will be proved later on in Theorem 4.2.3 (page 174).
Note that we had to extend the range of J to all the subsets of the extended
sample, although we will use for estimation only those of the training sample,
on which the labels are observed. Thus in this case also we can find a partially
exchangeable posterior distribution π such that

π
[
∆(θ̂J)

]
≥
(

h

e(k + 1)N

)h
.

We see that the size of the compression scheme plays the same role in
this complexity bound as the Vapnik–Cervonenkis dimension for Vapnik–
Cervonenkis classes.

In these two cases of binary classification with Vapnik–Cervonenkis di-
mension not greater than h and compression schemes depending on a com-
pression set with at most h points, we get a bound of

r2(θ) ≤ k + 1
k

inf
λ∈R+

1− exp

− λ
N
r1(θ)−

h log
(
e(k+1)N

h

)
− log(ε)

N


1− exp

(
− λ
N

)
− r1(θ)

k
.
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Let us make some numerical application: when N = 1000, h = 10, ε = 0.01,
and infΘ r1 = r1(θ̂) = 0.2, we find that r2(θ̂) ≤ 0.4093, for k between 15 and
17, and values of λ equal respectively to 965, 968 and 971. For k = 1, we
find only r2(θ̂) ≤ 0.539, showing the interest of allowing k to be larger than
1.

3.2.2. When the shadow sample has the same size as the training
sample. In the case when k = 1, we can improve Theorem 3.1.2 by taking
advantage of the fact that Ti(σi) can take only 3 values, namely 0, 0.5 and
1. We see thus that Ti(σi) − Φ λ

N

[
Ti(σi)

]
can take only two values, 0 and

1
2 − Φ λ

N
(1

2), because Φ λ
N

(0) = 0 and Φ λ
N

(1) = 1. Thus

Ti(σi)− Φ λ
N

[
Ti(σi)

]
=
[
1− |1− 2Ti(σi)|

][
1
2 − Φ λ

N
(1

2)
]
.

This shows that in the case when k = 1,

log
{
T
[
exp(−λr1)

]}
= −λr +

λ

N

N∑
i=1

Ti(σi)− Φ λ
N

[
Ti(σi)

]
= −λr +

λ

N

N∑
i=1

[
1− |1− 2Ti(σi)|

][
1
2 − Φ λ

N
(1

2)
]

≤ −λr + λ
[

1
2 − Φ λ

N
(1

2)
][

1− |1− 2r|
]
.

Noticing that 1
2 − Φ λ

N
(1

2) = N
λ log

[
cosh( λ

2N )
]
, we obtain

Theorem 3.2.4. For any partially exchangeable function λ : Ω×Θ→ R+,
for any partially exchangeable posterior distribution π : Ω→M1

+(Θ),

P

{
exp
[

sup
ρ∈M1

+(Θ)

ρ
[
λ(r − r1)

−N log
[
cosh( λ

2N )
](

1− |1− 2r|
)]
−K(ρ, π)

]}
≤ 1.

As a consequence, reasoning as previously, we deduce

Theorem 3.2.5. In the case when k = 1, for any partially exchangeable
posterior distribution π : Ω→ M1

+(Θ), with P probability at least 1− ε, for
any θ ∈ Θ and any λ ∈ R+,

r(θ)− N
λ log

[
cosh( λ

2N )
](

1− |1− 2r(θ)|
)

+
log
{
επ
[
∆(θ)

]}
λ

≤ r1(θ);

and consequently for any θ ∈ Θ,

r2(θ) ≤ 2 inf
λ∈R+

r1(θ)−
log
{
επ
[
∆(θ)

]}
λ

1− 2N
λ log

[
cosh( λ

2N )
] − r1(θ).
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In the case of binary classification using a Vapnik–Cervonenkis class
of Vapnik–Cervonenkis dimension not greater than h, we can choose π
such that − log

{
π
[
∆(θ)

]}
≤ h log(2eN

h ) and obtain the following numer-
ical illustration of this theorem: for N = 1000, h = 10, ε = 0.01 and
infΘ r1 = r1(θ̂) = 0.2, we find an upper bound r2(θ̂) ≤ 0.5033, which
improves on Theorem 3.2.3 but still is not under the significance level 1

2
(achieved by blind random classification). This indicates that considering
shadow samples of arbitrary sizes some noisy situations yields a significant
improvement on bounds obtained with a shadow sample of the same size as
the training sample.

3.2.3. When moreover the distribution of the augmented sample
is exchangeable. When k = 1 and P is exchangeable meaning that
for any bounded measurable function h : Ω → R and any permutation
s ∈ S

(
{1, . . . , 2N}

)
P
[
h(ω ◦ s)

]
= P

[
h(ω)

]
, then we can still improve the

bound as follows. Let

T ′(h) =
1
N !

∑
s∈S
(
{N+1,...,2N}

)h(ω ◦ s).

Then we can write

1− |1− 2Ti(σi)| = (σi − σi+N )2 = σi + σi+N − 2σiσi+N .

Using this identity, we get for any exchangeable function λ : Ω×Θ→ R+,

T

{
exp
[
λ(r − r1)− log

[
cosh( λ

2N )
] N∑
i=1

(
σi + σi+N − 2σiσi+N

)]}
≤ 1.

Let us put

A(λ) = 2N
λ log

[
cosh( λ

2N )
]
, (3.2)

v(θ) =
1

2N

N∑
i=1

(σi + σi+N − 2σiσi+N ). (3.3)

With this notation

T
{

exp
{
λ
[
r − r1 −A(λ)v

]}}
≤ 1.

Let us notice now that

T ′
[
v(θ)

]
= r(θ)− r1(θ)r2(θ).

Let π : Ω→M1
+(Θ) be any given exchangeable posterior distribution. Using

the exchangeability of P and π and the exchangeability of the exponential
function, we get

P
{
π
[
exp
{
λ
[
r − r1 −A(r − r1r2)

]}]}
= P

{
π
[
exp
{
λ
[
r − r1 −AT ′(v)

]}]}
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≤ P
{
π
[
T ′ exp

{
λ
[
r − r1 −Av

]}]}
= P

{
T ′π

[
exp
{
λ
[
r − r1 −Av

]}]}
= P

{
π
[
exp
{
λ
[
r − r1 −Av

]}]}
= P

{
Tπ
[
exp
{
λ
[
r − r1 −Av

]}]}
= P

{
π
[
T exp

{
λ
[
r − r1 −Av

]}]}
≤ 1.

We are thus ready to state

Theorem 3.2.6. In the case when k = 1, for any exchangeable probability
distribution P, for any exchangeable posterior distribution π : Ω→M1

+(Θ),
for any exchangeable function λ : Ω×Θ→ R+,

P

{
exp
[

sup
ρ∈M1

+(Θ)

ρ
{
λ
[
r − r1 −A(λ)(r − r1r2)

]}
−K(ρ, π)

]}
≤ 1,

where A(λ) is defined by equation (3.2, page 146).

We then deduce as previously

Corollary 3.2.7. For any exchangeable posterior distribution π : Ω →
M1

+(Θ), for any exchangeable probability measure P ∈M1
+(Ω), for any mea-

surable exchangeable function λ : Ω × Θ → R+, with P probability at least
1− ε, for any θ ∈ Θ,

r(θ) ≤ r1(θ) +A(λ)
[
r(θ)− r1(θ)r2(θ)

]
−

log
{
επ
[
∆(θ)

]}
λ

,

where A(λ) is defined by equation (3.2, page 146).

In order to deduce an empirical bound from this theorem, we have to make
some choice for λ(ω, θ). Fortunately, it is easy to show that the bound holds
uniformly in λ, because the inequality can be rewritten as a function of only
one non-exchangeable quantity, namely r1(θ). Indeed, since r2 = 2r− r1, we
see that the inequality can be written as

r(θ) ≤ r1(θ) +A(λ)
[
r(θ)− 2r(θ)r1(θ) + r1(θ)2

]
−

log
{
επ
[
∆(θ)

]
λ

.

It can be solved in r1(θ), to get

r1(θ) ≥ f
(
λ, r(θ),− log

{
επ
[
∆(θ)

]})
,

where

f(λ, r, d) =
[
2A(λ)

]−1
{

2rA(λ)− 1

+
√[

1− 2rA(λ)
]2 + 4A(λ)

{
r
[
1−A(λ)

]
− d

λ

}}
.
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Thus we can find some exchangeable function λ(ω, θ), such that

f
(
λ(ω, θ), r(θ),− log

{
επ
[
∆(θ)

]})
= sup

β∈R+

f
(
β, r(θ),− log

{
επ
[
∆(θ)

]})
.

Applying Corollary 3.2.7 (page 147) to that choice of λ, we see that

Theorem 3.2.8. For any exchangeable probability measure P ∈ M1
+(Ω),

for any exchangeable posterior probability distribution π : Ω→M1
+(Θ), with

P probability at least 1− ε, for any θ ∈ Θ, for any λ ∈ R+,

r(θ) ≤ r1(θ) +A(λ)
[
r(θ)− r1(θ)r2(θ)

]
−

log
{
επ
[
∆(θ)

]}
λ

,

where A(λ) is defined by equation (3.2, page 146).

Solving the previous inequality in r2(θ), we get

Corollary 3.2.9. Under the same assumptions as in the previous theo-
rem, with P probability at least 1− ε, for any θ ∈ Θ,

r2(θ) ≤ inf
λ∈R+

r1(θ)
{

1 + 2N
λ log

[
cosh( λ

2N )
]}
−

2 log
{
επ
[
∆(θ)

]}
λ

1− 2N
λ log

[
cosh( λ

2N )
][

1− 2r1(θ)
] .

Applying this to our usual numerical example of a binary classification model
with Vapnik–Cervonenkis dimension not greater than h = 10, when N =
1000, infΘ r1 = r1(θ̂) = 10 and ε = 0.01, we obtain that r2(θ̂) ≤ 0.4450.

3.3. Vapnik bounds for inductive classification

3.3.1. Arbitrary shadow sample size. We assume in this section that

P =
( N⊗
i=1

Pi

)⊗∞
∈M1

+

{[(
X× Y

)N]N}
,

where Pi ∈M1
+

(
X×Y

)
: we consider an infinite i.i.d. sequence of independent

non-identically distributed samples of size N , the first one only being ob-
served. More precisely, under P each sample (Xi+jN , Yi+jN )Ni=1 is distributed
according to

⊗N
i=1 Pi, and they are all independent from each other. Only

the first sample (Xi, Yi)Ni=1 is assumed to be observed. The shadow samples
will only appear in the proofs. The aim of this section is to prove better Vap-
nik bounds, generalizing them in the same time to the independent non-i.i.d.
setting, which to our knowledge has not been done before.

Let us introduce the notation P′
[
h(ω)

]
= P

[
h(ω) | (Xi, Yi)Ni=1

]
, where h

may be any suitable (e.g. bounded) random variable, let us also put Ω =[
(X× Y)N

]N.
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Definition 3.3.1. For any subset A ⊂ N of integers, let C(A) be the set of
circular permutations of the totally ordered set A, extended to a permutation
of N by taking it to be the identity on the complement N \A of A. We will
say that a random function h : Ω→ R is k-partially exchangeable if

h(ω ◦ s) = h(ω), s ∈ C
(
{i+ jN ; j = 0, . . . , k}

)
, i = 1, . . . , N.

In the same way, we will say that a posterior distribution π : Ω → M1
+(Θ)

is k-partially exchangeable if

π(ω ◦ s) = π(ω) ∈M1
+(Θ), s ∈ C

(
{i+ jN ; j = 0, . . . , k}

)
, i = 1, . . . , N.

Note that P itself is k-partially exchangeable for any k in the sense that for
any bounded measurable function h : Ω→ R

P
[
h(ω ◦ s)

]
= P

[
h(ω)

]
, s ∈ C

(
{i+ jN ; j = 0, . . . , k}

)
, i = 1, . . . , N.

Let ∆k(θ) =
{
θ′ ∈ Θ ;

[
fθ′(Xi)

](k+1)N

i=1
=
[
fθ(Xi)

](k+1)N

i=1

}
, θ ∈ Θ, k ∈ N∗,

and let also rk(θ) =
1

(k + 1)N

(k+1)N∑
i=1

1
[
fθ(Xi) 6= Yi

]
. Theorem 3.1.2 shows

that for any positive real parameter λ and any k-partially exchangeable
posterior distribution πk : Ω→M1

+(Θ),

P

{
exp
[
sup
θ∈Θ

λ
[
Φ λ
N

(rk)− r1

]
+ log

{
επk
[
∆k(θ)

]}]}
≤ ε.

Using the general fact that

P
[
exp(h)

]
= P

{
P′
[
exp(h)

]}
≥ P

{
exp
[
P′(h)

]}
,

and the fact that the expectation of a supremum is larger than the supremum
of an expectation, we see that with P probability at most 1−ε, for any θ ∈ Θ,

P′
{

Φ λ
N

[
rk(θ)

]}
≤ r1(θ)−

P′
{

log
{
επk
[
∆k(θ)

]}}
λ

.

For short let us put

d̄k(θ) = − log
{
επk
[
∆k(θ)

]}
,

d′k(θ) = −P′
{

log
{
επk
[
∆k(θ)

]}}
,

dk(θ) = −P
{

log
{
επk
[
∆k(θ)

]}}
.

We can use the convexity of Φ λ
N

and the fact that P′(rk) = r1+kR
k+1 , to

establish that

P′
{

Φ λ
N

[
rk(θ)

]}
≥ Φ λ

N

[
r1(θ) + kR(θ)

k + 1

]
.

We have proved
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Theorem 3.3.1. Using the above hypotheses and notation, for any sequence
πk : Ω→M1

+(Θ), where πk is a k-partially exchangeable posterior distribu-
tion, for any positive real constant λ, any positive integer k, with P proba-
bility at least 1− ε, for any θ ∈ Θ,

Φ λ
N

[
r1(θ) + kR(θ)

k + 1

]
≤ r1(θ) +

d′k(θ)
λ

.

We can make as we did with Theorem 1.2.6 (page 25) the result of this
theorem uniform in λ ∈ {αj ; j ∈ N∗} and k ∈ N∗ (considering on k the
prior 1

k(k+1) and on j the prior 1
j(j+1)), and obtain

Theorem 3.3.2. For any real parameter α > 1, with P probability at least
1− ε, for any θ ∈ Θ,

R(θ) ≤

inf
k∈N∗,j∈N∗

1− exp
{
−αj

N r1(θ)− 1
N

{
d′k(θ) + log

[
k(k + 1)j(j + 1)

]}}
k
k+1

[
1− exp

(
−αj

N

)]
− r1(θ)

k
.

As a special case we can choose πk such that log
{
πk
[
∆k(θ)

]}
is independent

of θ and equal to log(Nk), where

Nk =
∣∣{[fθ(Xi)

](k+1)N

i=1
; θ ∈ Θ

}∣∣
is the size of the trace of the classification model on the extended sample of
size (k + 1)N . With this choice, we obtain a bound involving a new flavour
of conditional Vapnik entropy, namely

d′k(θ) = P
[
log(Nk) |(Zi)Ni=1

]
− log(ε).

In the case of binary classification using a Vapnik–Cervonenkis class of
Vapnik–Cervonenkis dimension not greater than h = 10, when N = 1000,
infΘ r1 = r1(θ̂) = 0.2 and ε = 0.01, choosing α = 1.1, we obtain R(θ̂) ≤
0.4271 (for an optimal value of λ = 1071.8, and an optimal value of k = 16).

3.3.2. A better minimization with respect to the exponential pa-
rameter. If we are not pleased with optimizing λ on a discrete subset
of the real line, we can use a slightly different approach. From Theorem
3.1.2 (page 140), we see that for any positive integer k, for any k-partially
exchangeable positive real measurable function λ : Ω × Θ → R+ satisfy-
ing equation (3.1, page 143) — with ∆(θ) replaced with ∆k(θ) — for any
ε ∈)0, 1) and η ∈)0, 1),

P

{
P′
[
exp
[
sup
θ
λ
[
Φ λ
N

(rk)− r1

]
+ log

{
εηπk

[
∆k(θ)

]}]}
≤ εη,
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therefore with P probability at least 1− ε,

P′
{

exp
[
sup
θ
λ
[
Φ λ
N

(rk)− r1

]
+ log

{
εηπk

[
∆k(θ)

]}]}
≤ η,

and consequently, with P probability at least 1 − ε, with P′ probability at
least 1− η, for any θ ∈ Θ,

Φ λ
N

(rk) +
log
{
εηπk

[
∆k(θ)

]}
λ

≤ r1.

Now we are entitled to choose

λ(ω, θ) ∈ arg max
λ′∈R+

Φλ′
N

(rk) +
log
{
εηπk

[
∆k(θ)

]}
λ′

.

This shows that with P probability at least 1 − ε, with P′ probability at
least 1− η, for any θ ∈ Θ,

sup
λ∈R+

Φ λ
N

(rk)−
d̄k(θ)− log(η)

λ
≤ r1,

which can also be written

Φ λ
N

(rk)− r1 −
d̄k(θ)
λ
≤ − log(η)

λ
, λ ∈ R+.

Thus with P probability at least 1− ε, for any θ ∈ Θ, any λ ∈ R+,

P′
[
Φ λ
N

(rk)− r1 −
d̄k(θ)
λ

]
≤ − log(η)

λ
+
[
1− r1 +

log(η)
λ

]
η.

On the other hand, Φ λ
N

being a convex function,

P′
[
Φ λ
N

(rk)− r1 −
d̄k(θ)
λ

]
≥ Φ λ

N

[
P′(rk)

]
− r1 −

d′k
λ

= Φ λ
N

(
kR+ r1

k + 1

)
− r1 −

d′k
λ
.

Thus with P probability at least 1− ε, for any θ ∈ Θ,

kR+ r1

k + 1
≤ inf

λ∈R+

Φ−1
λ
N

[
r1(1− η) + η +

d′k − log(η)(1− η)
λ

]
.

We can generalize this approach by considering a finite decreasing sequence
η0 = 1 > η1 > η2 > · · · > ηJ > ηJ+1 = 0, and the corresponding sequence of
levels

Lj = − log(ηj)
λ

, 0 ≤ j ≤ J,
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LJ+1 = 1− r1 −
log(J)− log(ε)

λ
.

Taking a union bound in j, we see that with P probability at least 1− ε, for
any θ ∈ Θ, for any λ ∈ R+,

P′
[
Φ λ
N

(rk)− r1 −
d̄k + log(J)

λ
≥ Lj

]
≤ ηj , j = 0, . . . , J + 1,

and consequently

P′
[
Φ λ
N

(rk)− r1 −
d̄k + log(J)

λ

]
≤
∫ LJ+1

0
P′
[
Φ λ
N

(rk)− r1 −
d̄k + log(J)

λ
≥ α

]
dα ≤

J+1∑
j=1

ηj−1(Lj − Lj−1)

= ηJ

[
1− r1 −

log(J)− log(ε)− log(ηJ)
λ

]
− log(η1)

λ
+
J−1∑
j=1

ηj
λ

log
(

ηj
ηj+1

)
.

Let us put

d′′k
[
θ, (ηj)Jj=1

]
= d′k(θ) + log(J)− log(η1)

+
J−1∑
j=1

ηj log
(

ηj
ηj+1

)
+ log

(εηJ
J

)
ηJ .

We have proved that for any decreasing sequence (ηj)Jj=1, with P proba-
bility at least 1− ε, for any θ ∈ Θ,

kR+ r1

k + 1
≤ inf

λ∈R+

Φ−1
λ
N

[
r1(1− ηJ) + ηJ +

d′′k
[
θ, (ηj)Jj=1

]
λ

]
.

Remark 3.3.1. We can for instance choose J = 2, η2 = 1
10N , η1 = 1

log(10N) ,
resulting in

d′′k = d′k + log(2) + log log(10N) + 1− log log(10N)
log(10N)

−
log
(

20N
ε

)
10N

.

In the case where N = 1000 and for any ε ∈)0, 1), we get d′′k ≤ d′k + 3.7, in
the case where N = 106, we get d′′k ≤ d′k + 4.4, and in the case N = 109, we
get d′′k ≤ d′k + 4.7.

Therefore, for any practical purpose we could take d′′k = d′k + 4.7 and
ηJ = 1

10N in the above inequality.

Taking moreover a weighted union bound in k, we get
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Theorem 3.3.3. For any ε ∈)0, 1), any sequence 1 > η1 > · · · > ηJ >
0, any sequence πk : Ω → M1

+(Θ), where πk is a k-partially exchangeable
posterior distribution, with P probability at least 1− ε, for any θ ∈ Θ,

R(θ) ≤ inf
k∈N∗

k + 1
k

inf
λ∈R+

Φ−1
λ
N

[
r1(θ) + ηJ

[
1− r1(θ)

]
+
d′′k
[
θ, (ηj)Jj=1

]
+ log

[
k(k + 1)

]
λ

]
− r1(θ)

k
.

Corollary 3.3.4. For any ε ∈)0, 1), for any N ≤ 109, with P probability
at least 1− ε, for any θ ∈ Θ,

R(θ) ≤ inf
k∈N∗

inf
λ∈R+

k + 1
k

[
1− exp(− λ

N )
]−1
{

1− exp
[
− λ
N

[
r1(θ) + 1

10N

]
−
P′
[
log(Nk) | (Zi)Ni=1

]
− log(ε) + log

[
k(k + 1)

]
+ 4.7

N

]}
− r1(θ)

k
.

Let us end this section with a numerical example: in the case of binary
classification with a Vapnik–Cervonenkis class of dimension not greater than
10, when N = 1000, infΘ r1 = r1(θ̂) = 0.2 and ε = 0.01, we get a bound
R(θ̂) ≤ 0.4211 (for optimal values of k = 15 and of λ = 1010).

3.3.3. Equal shadow and training sample sizes. In the case when
k = 1, we can use Theorem 3.2.5 (page 145) and replace Φ−1

λ
N

(q) with
{

1−
2N
λ log

[
cosh( λ

2N )
]}−1

q, resulting in

Theorem 3.3.5. For any ε ∈)0, 1), any N ≤ 109, any one-partially ex-
changeable posterior distribution π1 : Ω → M1

+(Θ), with P probability at
least 1− ε, for any θ ∈ Θ,

R(θ) ≤ inf
λ∈R+

{
1 + 2N

λ log
[
cosh( λ

2N )
]}
r1(θ) +

1
5N

+ 2
d′1(θ) + 4.7

λ
1− 2N

λ log
[
cosh( λ

2N )
] .

3.3.4. Improvement on the equal sample size bound in the i.i.d. case.
Finally, in the case when P is i.i.d., meaning that all the Pi are equal, we
can improve the previous bound. For any partially exchangeable function
λ : Ω × Θ → R+, we saw in the discussion preceding Theorem 3.2.6 (page
147) that

T
[
exp
[
λ(rk − r1)−A(λ)v

]]
≤ 1,

with the notation introduced therein. Thus for any partially exchangeable
positive real measurable function λ : Ω×Θ→ R+ satisfying equation (3.1,
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page 143), any one-partially exchangeable posterior distribution π1 : Ω →
M1

+(Θ),

P
{

exp
[
sup
θ∈Θ

λ
[
rk(θ)− r1(θ)−A(λ)v(θ)

]
+ log

[
επ1

[
∆(θ)

]]}
≤ 1.

Therefore with P probability at least 1− ε, with P′ probability 1− η,

rk(θ) ≤ r1(θ) +A(λ)v(θ) +
1
λ

[
d̄1(θ)− log(η)

]
.

We can then choose λ(ω, θ) ∈ arg min
λ′∈R+

A(λ′)v(θ)+
d̄1(θ)− log(η)

]
λ′

, which

satisfies the required conditions, to show that with P probability at least
1− ε, for any θ ∈ Θ, with P′ probability at least 1− η, for any λ ∈ R+,

rk(θ) ≤ r1(θ) +A(λ)v(θ) +
d̄1(θ)− log(η)

λ
.

We can then take a union bound on a decreasing sequence of J values
η1 ≥ · · · ≥ ηJ of η. Weakening the order of quantifiers a little, we then
obtain the following statement: with P probability at least 1 − ε, for any
θ ∈ Θ, for any λ ∈ R+, for any j = 1, . . . , J

P′
[
rk(θ)− r1(θ)−A(λ)v(θ)− d̄1(θ) + log(J)

λ
≥ − log(ηj)

λ

]
≤ ηj .

Consequently for any λ ∈ R+,

P′
[
rk(θ)− r1(θ)−A(λ)v(θ)− d̄1(θ) + log(J)

λ

]
≤ − log(η1)

λ
+ ηJ

[
1− r1(θ)− log(J)− log(ε)− log(ηJ)

λ

]
+
J−1∑
j=1

ηj
λ

log
(

ηj
ηj+1

)
.

Moreover P′
[
v(θ)

]
= r1+R

2 − r1R, (this is where we need equidistribution)
thus proving that

R− r1

2
≤ A(λ)

2

[
R+ r1 − 2r1R

]
+
d′′1
[
θ, (ηj)Jj=1

]
λ

+ ηJ
[
1− r1(θ)

]
.

Keeping track of quantifiers, we obtain

Theorem 3.3.6. For any decreasing sequence (ηj)Jj=1, any ε ∈)0, 1), any
one-partially exchangeable posterior distribution π : Ω → M1

+(Θ), with P
probability at least 1− ε, for any θ ∈ Θ,

R(θ) ≤ inf
λ∈R+{
1 + 2N

λ log
[
cosh( λ

2N )
]}
r1(θ) +

2d′′1
[
θ, (ηj)Jj=1

]
λ

+ 2ηJ
[
1− r1(θ)

]
1− 2N

λ log
[
cosh( λ

2N )
][

1− 2r1(θ)
] .
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3.4. Gaussian approximation in Vapnik bounds

3.4.1. Gaussian upper bounds of variance terms. To obtain formu-
las which could be easily compared with original Vapnik bounds, we may
replace p− Φa(p) with a Gaussian upper bound:

Lemma 3.4.1. For any p ∈ (0, 1
2), any a ∈ R+,

p− Φa(p) ≤
a

2
p(1− p).

For any p ∈ (1
2 , 1),

p− Φa(p) ≤
a

8
.

Proof. Let us notice that for any p ∈ (0, 1),

∂

∂a

[
−aΦa(p)

]
= − p exp(−a)

1− p+ p exp(−a)
,

∂2

∂2a

[
−aΦa(p)

]
=

p exp(−a)
1− p+ p exp(−a)

(
1− p exp(−a)

1− p+ p exp(−a)

)
≤

{
p(1− p) p ∈ (0, 1

2),
1
4 p ∈ (1

2 , 1).

Thus taking a Taylor expansion of order one with integral remainder:

−aΦ(a) ≤



−ap+
∫ a

0
p(1− p)(a− b)db

= −ap+
a2

2
p(1− p), p ∈ (0, 1

2),

−ap+
∫ a

0

1
4

(a− b)db = −ap+
a2

8
, p ∈ (1

2 , 1).

This ends the proof of our lemma. �

Lemma 3.4.2. Let us consider the bound

B(q, d) =
(

1 +
2d
N

)−1 [
q +

d

N
+

√
2dq(1− q)

N
+

d2

N2

]
, q ∈ R+, d ∈ R+.

Let us also put

B̄(q, d) =

{
B(q, d) B(q, d) ≤ 1

2 ,

q +
√

d
2N otherwise.

For any positive real parameters q and d

inf
λ∈R+

Φ−1
λ
N

(
q +

d

λ

)
≤ B̄(q, d).
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Proof. Let p = inf
λ

Φ−1
λ
N

(
q +

d

λ

)
. For any λ ∈ R+,

p− λ

2N
(p ∧ 1

2)
[
1− (p ∧ 1

2)
]
≤ Φ λ

N
(p) ≤ q +

d

λ
.

Thus

p ≤ q + inf
λ∈R+

λ

2N
(p ∧ 1

2)
[
1− (p ∧ 1

2)
]

+
d

λ

= q +

√
2d(p ∧ 1

2)
[
1− (p ∧ 1

2)
]

N
≤ q +

√
d

2N
.

Then let us remark that B(q, d) = sup

{
p′ ∈ R+ ; p′ ≤ q +

√
2dp′(1− p′)

N

}
.

If moreover 1
2 ≥ B(q, d), then according to this remark 1

2 ≥ q +
√

d
2N ≥ p.

Therefore p ≤ 1
2 , and consequently p ≤ q +

√
2dp(1−p)

N , implying that p ≤
B(q, d). �

3.4.2. Arbitrary shadow sample size. The previous lemma combined
with Corollary 3.3.4 (page 153) implies

Corollary 3.4.3. Let us use the notation introduced in Lemma 3.4.2 (page
155). For any ε ∈)0, 1), any integer N ≤ 109, with P probability at least 1−ε,
for any θ ∈ Θ,

R(θ) ≤ inf
k∈N∗

k + 1
k

{
B̄
[
r1(θ) +

1
10N

, d′k(θ) + log
[
k(k + 1)

]
+ 4.7

]}
− r1(θ)

k
.

3.4.3. Equal sample sizes in the i.i.d. case. To make a link with
Vapnik’s result, it is useful to state the Gaussian approximation to Theorem
3.3.6 (page 154). Indeed, using the upper bound A(λ) ≤ λ

4N , where A(λ) is
defined by equation (3.2) on page 146, we get with P probability at least
1− ε

R− r1 − 2ηJ ≤ inf
λ∈R+

λ

4N
[
R+ r1 − 2r1R

]
+

2d′′1
λ

=

√
2d′′1(R+ r1 − 2r1R)

N
,

which can be solved in R to obtain

Corollary 3.4.4. With P probability at least 1− ε, for any θ ∈ Θ,

R(θ) ≤ r1(θ) +
d′′1(θ)
N

[
1− 2r1(θ)

]
+ 2ηJ

+

√
4d′′1(θ)

[
1− r1(θ)

]
r1(θ)

N
+
d′′1(θ)2

N2

[
1− 2r1(θ)

]2 +
4d′′1(θ)
N

[
1− 2r1(θ)

]
ηJ .
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This is to be compared with Vapnik’s result, as proved in Vapnik (1998,
page 138):

Theorem 3.4.5 (Vapnik). For any i.i.d. probability distribution P, with
P probability at least 1− ε, for any θ ∈ Θ, putting

dV = log
[
P(N1)

]
+ log(4/ε),

R(θ) ≤ r1(θ) +
2dV
N

+

√
4dV r1(θ)

N
+

4d2
V

N2
.

Recalling that we can choose (ηj)2
j=1 such that ηJ = η2 = 1

10N (which brings
a negligible contribution to the bound) and such that for any N ≤ 109,

d′′1(θ) ≤ P
[
log(N1) | (Zi)Ni=1

]
− log(ε) + 4.7,

we see that our complexity term is somehow more satisfactory than Vapnik’s,
since it is integrated outside the logarithm, with a slightly larger additional
constant (remember that log 4 ' 1.4, which is better than our 4.7, which
could presumably be improved by working out a better sequence ηj , but not
down to log(4)). Our variance term is better, since we get r1(1−r1), instead

of r1. We also have
d′′1
N

instead of 2
dV
N

, because we use no symmetrization
trick.

Let us illustrate these bounds on a numerical example, corresponding to
a situation where the sample is noisy or the classification model is weak. Let
us assume that N = 1000, infΘ r1 = r1(θ̂) = 0.2, that we are performing
binary classification with a model with Vapnik–Cervonenkis dimension not
greater than h = 10, and that we work at confidence level ε = 0.01. Vapnik’s
theorem provides an upper bound for R(θ̂) not smaller than 0.610, whereas
Corollary 3.4.4 gives R(θ̂) ≤ 0.461 (using the bound d′′1 ≤ d′1 + 3.7 when
N = 1000). Now if we go for Theorem 3.3.6 and do not make a Gaussian
approximation, we get R(θ̂) ≤ 0.453. It is interesting to remark that this
bound is achieved for λ = 1195 > N = 1000. This explains why the Gaussian
approximation in Vapnik’s bound can be improved: for such a large value of
λ, λr1(θ) does not behave like a Gaussian random variable.

Let us recall in conclusion that the best bound is provided by Theorem
3.3.3 (page 153), giving R(θ̂) ≤ 0.4211, (that is approximately 2/3 of Vap-
nik’s bound), for optimal values of k = 15, and of λ = 1010. This bound can
be seen to take advantage of the fact that Bernoulli random variables are
not Gaussian (its Gaussian approximation, Corollary 3.4.3, gives a bound
R(θ) ' 0.4325, still with an optimal k = 15), and of the fact that the op-
timal size of the shadow sample is significantly larger than the size of the
observed sample. Moreover, Theorem 3.3.3 does not assume that the sample
is i.i.d., but only that it is independent, thus generalizing Vapnik’s bounds
to inhomogeneous data (this will presumably be the case when data are col-
lected from different places where the experimental conditions may not be
the same, although they may reasonably be assumed to be independent).
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Our little numerical example was chosen to illustrate the case when it is
non-trivial to decide whether the chosen classifier does better than the 0.5
error rate of blind random classification. This case is of interest to choose
“weak learners” to be aggregated or combined in some appropriate way in
a second stage to reach a better classification rate. This stage of feature
selection is unavoidable in many real world classification tasks. Our little
computations are meant to exemplify the fact that Vapnik’s bounds, al-
though asymptotically suboptimal, as is obvious by comparison with the
first two chapters, can do the job when dealing with moderate sample sizes.



Chapter 4

Support Vector Machines

4.1. How to build them

4.1.1. The canonical hyperplane. Support Vector Machines, of wide
use and renown, were conceived by V. Vapkik (Vapnik, 1998). Before in-
troducing them, we will study as a prerequisite the separation of points by
hyperplanes in a finite dimensional Euclidean space. Support Vector Ma-
chines perform the same kind of linear separation after an implicit change of
pattern space. The preceding PAC-Bayesian results provide a fit framework
to analyse their generalization properties.

In this section we deal with the classification of points in Rd in two
classes. Let Z = (xi, yi)Ni=1 ∈

(
Rd × {−1,+1}

)N be some set of labelled
examples (called the training set hereafter). Let us split the set of indices
I = {1, . . . , N} according to the labels into two subsets

I+ = {i ∈ I : yi = +1},
I− = {i ∈ I : yi = −1}.

Let us then consider the set of admissible separating directions

AZ =
{
w ∈ Rd : sup

b∈R
inf
i∈I

(〈w, xi〉 − b)yi ≥ 1
}
,

which can also be written as

AZ =
{
w ∈ Rd : max

i∈I−
〈w, xi〉+ 2 ≤ min

i∈I+
〈w, xi〉

}
.

As it is easily seen, the optimal value of b for a fixed value of w, in other
words the value of b which maximizes infi∈I(〈w, xi〉 − b)yi, is equal to

bw =
1
2

[
max
i∈I−
〈w, xi〉+ min

i∈I+
〈w, xi〉

]
.

Lemma 4.1.1. When AZ 6= ∅, inf{‖w‖2 : w ∈ AZ} is reached for only one
value wZ of w.

159



160 Chapter 4. Support Vector Machines

Proof. Let w0 ∈ AZ . The set AZ ∩ {w ∈ Rd : ‖w‖ ≤ ‖w0‖} is a compact
convex set and w 7→ ‖w‖2 is strictly convex and therefore has a unique
minimum on this set, which is also obviously its minimum on AZ . �

Definition 4.1.1. When AZ 6= ∅, the training set Z is said to be linearly
separable. The hyperplane

H = {x ∈ Rd : 〈wZ , x〉 − bZ = 0},

where

wZ = arg min{‖w‖ : w ∈ AZ},
bZ = bwZ ,

is called the canonical separating hyperplane of the training set Z. The
quantity ‖wZ‖−1 is called the margin of the canonical hyperplane.

As mini∈I+〈wZ , xi〉 −maxi∈I−〈wZ , xi〉 = 2, the margin is also equal to half
the distance between the projections on the direction wZ of the positive and
negative patterns.

4.1.2. Computation of the canonical hyperplane. Let us consider
the convex hulls X+ and X− of the positive and negative patterns:

X+ =
{∑
i∈I+

λixi :
(
λi
)
i∈I+ ∈ R

I+
+ ,
∑
i∈I+

λi = 1
}
,

X− =
{∑
i∈I−

λixi :
(
λi
)
i∈I− ∈ R

I−
+ ,
∑
i∈I−

λi = 1
}
.

Let us introduce the closed convex set

V = X+ − X− =
{
x+ − x− : x+ ∈ X+, x− ∈ X−

}
.

As v 7→ ‖v‖2 is strictly convex, with compact lower level sets, there is a
unique vector v∗ such that

‖v∗‖2 = inf
v∈V

{
‖v‖2 : v ∈ V

}
.

Lemma 4.1.2. The set AZ is non-empty (i.e. the training set Z is linearly
separable) if and only if v∗ 6= 0. In this case

wZ =
2
‖v∗‖2

v∗,

and the margin of the canonical hyperplane is equal to 1
2‖v
∗‖.
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This lemma proves that the distance between the convex hulls of the pos-
itive and negative patterns is equal to twice the margin of the canonical
hyperplane.

Proof. Let us assume first that v∗ = 0, or equivalently that X+∩X− 6= ∅.
For any vector w ∈ Rd,

min
i∈I+
〈w, xi〉 = min

x∈X+

〈w, x〉,

max
i∈I−
〈w, xi〉 = max

x∈X−
〈w, x〉,

so mini∈I+〈w, xi〉 − maxi∈I−〈w, xi〉 ≤ 0, which shows that w cannot be in
AZ and therefore that AZ is empty.

Let us assume now that v∗ 6= 0, or equivalently that X+ ∩ X− = ∅. Let
us put w∗ = 2v∗/‖v∗‖2. Let us remark first that

min
i∈I+
〈w∗, xi〉 −max

i∈I−
〈w∗, xi〉 = inf

x∈X+

〈w∗, x〉 − sup
x∈X−

〈w∗, x〉

= inf
x+∈X+,x−∈X−

〈w∗, x+ − x−〉

=
2
‖v∗‖2

inf
v∈V
〈v∗, v〉.

Let us now prove that infv∈V〈v∗, v〉 = ‖v∗‖2. Some arbitrary v ∈ V being
fixed, consider the function

β 7→ ‖βv + (1− β)v∗‖2 : [0, 1]→ R.

By definition of v∗, it reaches its minimum value for β = 0, and therefore
has a non-negative derivative at this point. Computing this derivative, we
find that 〈v − v∗, v∗〉 ≥ 0, as claimed. We have proved that

min
i∈I+
〈w∗, xi〉 −max

i∈I−
〈w∗, xi〉 = 2,

and therefore that w∗ ∈ AZ . On the other hand, any w ∈ AZ is such that

2 ≤ min
i∈I+
〈w, xi〉 −max

i∈I−
〈w, xi〉 = inf

v∈V
〈w, v〉 ≤ ‖w‖ inf

v∈V
‖v‖ = ‖w‖ ‖v∗‖.

This proves that ‖w∗‖ = inf
{
‖w‖ : w ∈ AZ

}
, and therefore that w∗ = wZ

as claimed. �
One way to compute wZ would therefore be to compute v∗ by minimizing{

‖
∑
i∈I

λiyixi‖2 : (λi)i∈I ∈ RI+,
∑
i∈I

λi = 2,
∑
i∈I

yiλi = 0
}
.

Although this is a tractable quadratic programming problem, a direct com-
putation of wZ through the following proposition is usually preferred.
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Proposition 4.1.3. The canonical direction wZ can be expressed as

wZ =
N∑
i=1

α∗i yixi,

where (α∗i )
N
i=1 is obtained by minimizing

inf
{
F (α) : α ∈ A

}
where

A =
{

(αi)i∈I ∈ RI+,
∑
i∈I

αiyi = 0
}
,

and
F (α) =

∥∥∥∑
i∈I

αiyixi

∥∥∥2
− 2

∑
i∈I

αi.

Proof. Let w(α) =
∑

i∈I αiyixi and let S(α) = 1
2

∑
i∈I αi. We can express

the function F (α) as F (α) = ‖w(α)‖2 − 4S(α). Moreover it is important to
notice that for any s ∈ R+, {w(α) : α ∈ A, S(α) = s} = sV. This shows that
for any s ∈ R+, inf{F (α) : α ∈ A, S(α) = s} is reached and that for any
αs ∈ {α ∈ A : S(α) = s} reaching this infimum, w(αs) = sv∗. As
s 7→ s2‖v∗‖2 − 4s : R+ → R reaches its infimum for only one value s∗

of s, namely at s∗ = 2
‖v∗‖2 , this shows that F (α) reaches its infimum on

A, and that for any α∗ ∈ A such that F (α∗) = inf{F (α) : α ∈ A},
w(α∗) = 2

‖v∗‖2 v
∗ = wZ . �

4.1.3. Support vectors.

Definition 4.1.2. The set of support vectors S is defined by

S = {xi : 〈wZ , xi〉 − bZ = yi}.

Proposition 4.1.4. Any α∗ minimizing F (α) on A is such that

{xi : α∗i > 0} ⊂ S.

This implies that the representation wZ = w(α∗) involves in general only
a limited number of non-zero coefficients and that wZ = wZ′, where Z ′ =
{(xi, yi) : xi ∈ S}.

Proof. Let us consider any given i ∈ I+ and j ∈ I−, such that α∗i > 0 and
α∗j > 0. There exists at least one such index in each set I− and I+, since
the sum of the components of α∗ on each of these sets are equal and since∑

k∈I α
∗
k > 0. For any t ∈ R, consider

αk(t) = α∗k + t1(k ∈ {i, j}), k ∈ I.
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The vector α(t) is in A for any value of t in some neighbourhood of 0,
therefore ∂

∂t |t=0
F
[
α(t)

]
= 0. Computing this derivative, we find that

yi〈w(α∗), xi〉+ yj〈w(α∗), xj〉 = 2.

As yi = −yj , this can also be written as

yi
[
〈w(α∗), xi〉 − bZ

]
+ yj

[
〈w(α∗), xj〉 − bZ

]
= 2.

As w(α∗) ∈ AZ ,

yk
[
〈w(α∗), xk〉 − bZ

]
≥ 1, k ∈ I,

which implies necessarily as claimed that

yi
[
〈w(α∗), xi〉 − bZ

]
= yj

[
〈w(α∗), xj〉 − bZ

]
= 1.

�

4.1.4. The non-separable case. In the case when the training set Z =
(xi, yi)Ni=1 is not linearly separable, we can define a noisy canonical hyper-
plane as follows: we can choose w ∈ Rd and b ∈ R to minimize

C(w, b) =
N∑
i=1

[
1−

(
〈w, xi〉 − b

)
yi
]
+

+ 1
2‖w‖

2, (4.1)

where for any real number r, r+ = max{r, 0} is the positive part of r.

Theorem 4.1.5. Let us introduce the dual criterion

F (α) =
N∑
i=1

αi −
1
2

∥∥∥∥ N∑
i=1

yiαixi

∥∥∥∥2

and the domain A′ =
{
α ∈ RN+ : αi ≤ 1, i = 1, . . . , N,

N∑
i=1

yiαi = 0
}
. Let

α∗ ∈ A′ be such that F (α∗) = supα∈A′ F (α). Let w∗ =
∑N

i=1 yiα
∗
i xi. There

is a threshold b∗ (whose construction will be detailed in the proof), such that

C(w∗, b∗) = inf
w∈Rd,b∈R

C(w, b).

Corollary 4.1.6. (scaled criterion) For any positive real parameter λ
let us consider the criterion

Cλ(w, b) = λ2
N∑
i=1

[
1− (〈w, xi〉 − b)yi

]
+

+ 1
2‖w‖

2
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and the domain A′λ =
{
α ∈ RN+ : αi ≤ λ2, i = 1, . . . , N,

N∑
i=1

yiαi = 0
}
. For

any solution α∗ of the minimization problem F (α∗) = supα∈A′λ
F (α), the

vector w∗ =
∑N

i=1 yiα
∗
i xi is such that

inf
b∈R

Cλ(w∗, b) = inf
w∈Rd,b∈R

Cλ(w, b).

In the separable case, the scaled criterion is minimized by the canonical
hyperplane for λ large enough. This extension of the canonical hyperplane
computation in dual space is often called the box constraint, for obvious
reasons.
Proof. The corollary is a straightforward consequence of the scale property
Cλ(w, b, x) = λ2C(λ−1w, b, λx), where we have made the dependence of the
criterion in x ∈ RdN explicit. Let us come now to the proof of the theorem.

The minimization of C(w, b) can be performed in dual space extending the
couple of parameters (w, b) to w = (w, b, γ) ∈ Rd×R×RN+ and introducing
the dual multipliers α ∈ RN+ and the criterion

G(α,w) =
N∑
i=1

γi +
N∑
i=1

αi
{[

1− (〈w, xi〉 − b)yi
]
− γi

}
+ 1

2‖w‖
2.

We see that
C(w, b) = inf

γ∈RN+
sup
α∈RN+

G
[
α, (w, b, γ)

]
,

and therefore, putting W = {(w, b, γ) : w ∈ Rd, b ∈ R, γ ∈ RN+
}

, we are led
to solve the minimization problem

G(α∗, w∗) = inf
w∈W

sup
α∈RN+

G(α,w),

whose solution w∗ = (w∗, b∗, γ∗) is such that C(w∗, b∗) = inf(w,b)∈Rd+1 C(w, b),
according to the preceding identity. As for any value of α′ ∈ RN+ ,

inf
w∈W

sup
α∈RN+

G(α,w) ≥ inf
w∈W

G(α′, w),

it is immediately seen that

inf
w∈W

sup
α∈RN+

G(α,w) ≥ sup
α∈RN+

inf
w∈W

G(α,w).

We are going to show that there is no duality gap, meaning that this in-
equality is indeed an equality. More importantly, we will do so by exhibiting
a saddle point, which, solving the dual minimization problem will also solve
the original one.
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Let us first make explicit the solution of the dual problem (the interest of
this dual problem precisely lies in the fact that it can more easily be solved
explicitly). Introducing the admissible set of values of α,

A′ =
{
α ∈ RN : 0 ≤ αi ≤ 1, i = 1, . . . , N,

N∑
i=1

yiαi = 0
}
,

it is elementary to check that

inf
w∈W

G(α,w) =

 inf
w∈Rd

G
[
α, (w, 0, 0)

]
, α ∈ A′,

−∞, otherwise.

As

G
[
α, (w, 0, 0)

]
= 1

2‖w‖
2 +

N∑
i=1

αi
(
1− 〈w, xi〉yi

)
,

we see that infw∈Rd G
[
α, (w, 0, 0)

]
is reached at

wα =
N∑
i=1

yiαixi.

This proves that
inf
w∈W

G(α,w) = F (α).

The continuous map α 7→ infw∈WG(α,w) reaches a maximum α∗, not nec-
essarily unique, on the compact convex set A′. We are now going to exhibit
a choice of w∗ ∈W such that (α∗, w∗) is a saddle point. This means that we
are going to show that

G(α∗, w∗) = inf
w∈W

G(α∗, w) = sup
α∈RN+

G(α,w∗).

It will imply that

inf
w∈W

sup
α∈Rd+

G(α,w) ≤ sup
α∈RN+

G(α,w∗) = G(α∗, w∗)

on the one hand and that

inf
w∈W

sup
α∈Rd+

G(α,w) ≥ inf
w∈W

G(α∗, w) = G(α∗, w∗)

on the other hand, proving that

G(α∗, w∗) = inf
w∈W

sup
α∈RN+

G(α,w)

as required.
Construction of w∗.
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• Let us put w∗ = wα∗ .
• If there is j ∈ {1, . . . , N} such that 0 < α∗j < 1, let us put

b∗ = 〈xj , w∗〉 − yj .

Otherwise, let us put

b∗ = sup{〈xi, w∗〉 − 1 : α∗i > 0, yi = +1, i = 1, . . . , N}.

• Let us then put

γ∗i =

{
0, α∗i < 1,
1− (〈w∗, xi〉 − b∗)yi, α∗i = 1.

If we can prove that

1− (〈w∗, xi〉 − b∗)yi


≤ 0, α∗i = 0,
= 0, 0 < α∗i < 1,
≥ 0, α∗i = 1,

(4.2)

it will show that γ∗ ∈ RN+ and therefore that w∗ = (w∗, b∗, γ∗) ∈ W. It will
also show that

G(α,w∗) =
N∑
i=1

γ∗i +
∑
i,α∗i=0

αi
[
1− (〈w∗, xi〉 − b∗)yi

]
+ 1

2‖w
∗‖2,

proving that G(α∗, w∗) = supα∈RN+ G(α,w∗). As obviously G(α∗, w∗) =

G
[
α∗, (w∗, 0, 0)

]
, we already know that G(α∗, w∗) = infw∈WG(α∗, w). This

will show that (α∗, w∗) is the saddle point we were looking for, thus ending
the proof of the theorem.
Proof of equation (4.2). Let us deal first with the case when there is
j ∈ {1, . . . , N} such that 0 < α∗j < 1.

For any i ∈ {1, . . . , N} such that 0 < α∗i < 1, there is ε > 0 such that for
any t ∈ (−ε, ε), α∗ + tyiei − tyjej ∈ A′, where (ek)Nk=1 is the canonical base
of RN . Thus ∂

∂t |t=0
F (α∗ + tyiei − tyjej) = 0. Computing this derivative, we

obtain

∂

∂t |t=0
F (α∗ + tyiei − tyjej) = yi − 〈w∗, xi〉+ 〈w∗, xj〉 − yj

= yi
[
1−

(
〈w, xi〉 − b∗

)
yi
]
.

Thus 1−
(
〈w, xi〉−b∗

)
yi = 0, as required. This shows also that the definition

of b∗ does not depend on the choice of j such that 0 < α∗j < 1.
For any i ∈ {1, . . . , N} such that α∗i = 0, there is ε > 0 such that for

any t ∈ (0, ε), α∗ + tei − tyiyjej ∈ A′. Thus ∂
∂t |t=0

F (α∗ + tei − tyiyjej) ≤ 0,
showing that 1−

(
〈w∗, xi〉 − b∗

)
yi ≤ 0 as required.
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For any i ∈ {1, . . . , N} such that α∗i = 1, there is ε > 0 such that α∗ −
tei + tyiyjej ∈ A′. Thus ∂

∂t |t=0
F (α∗ − tei + tyiyjej) ≤ 0, showing that 1 −(

〈w∗, xi〉 − b∗
)
yi ≥ 0 as required. This shows that (α∗, w∗) is a saddle point

in this case.
Let us deal now with the case where α∗ ∈ {0, 1}N . If we are not in the

trivial case where the vector (yi)Ni=1 is constant, the case α∗ = 0 is ruled out.
Indeed, in this case, considering α∗ + tei + tej , where yiyj = −1, we would
get the contradiction 2 = ∂

∂t |t=0
F (α∗ + tei + tej) ≤ 0.

Thus there are values of j such that α∗j = 1, and since
∑N

i=1 αiyi = 0,
both classes are present in the set {j : α∗j = 1}.

Now for any i, j ∈ {1, . . . , N} such that α∗i = α∗j = 1 and such that
yi = +1 and yj = −1, ∂

∂t |t=0
F (α∗− tei− tej) = −2 + 〈w∗, xi〉− 〈w∗, xj〉 ≤ 0.

Thus

sup{〈w∗, xi〉 − 1 : α∗i = 1, yi = +1} ≤ inf{〈w∗, xj〉+ 1 : α∗j = 1, yj = −1},

showing that
1−

(
〈w∗, xk〉 − b∗

)
yk ≥ 0, α∗k = 1.

Finally, for any i such that α∗i = 0, for any j such that α∗j = 1 and yj = yi,
we have

∂

∂t |t=0
F (α∗ + tei − tej) = yi〈w∗, xi − xj〉 ≤ 0,

showing that 1−
(
〈w∗, xi〉 − b∗

)
yi ≤ 0. This shows that (α∗, w∗) is always a

saddle point.

4.1.5. Support Vector Machines.

Definition 4.1.3. The symmetric measurable kernel K : X×X→ R is said
to be positive (or more precisely positive semi-definite) if for any n ∈ N,
any (xi)ni=1 ∈ Xn,

inf
α∈Rn

n∑
i=1

n∑
j=1

αiK(xi, xj)αj ≥ 0.

Let Z = (xi, yi)Ni=1 be some training set. Let us consider as previously

A =
{
α ∈ RN+ :

N∑
i=1

αiyi = 0
}
.

Let

F (α) =
N∑
i=1

N∑
j=1

αiyiK(xi, xj)yjαj − 2
N∑
i=1

αi.
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Definition 4.1.4. Let K be a positive symmetric kernel. The training set
Z is said to be K-separable if

inf
{
F (α) : α ∈ A

}
> −∞.

Lemma 4.1.7. When Z is K-separable, inf{F (α) : α ∈ A} is reached.

Proof. Consider the training set Z ′ = (x′i, yi)
N
i=1, where

x′i =
{[{

K(xk, x`)
}N N

k=1,`=1

]1/2

(i, j)
}N
j=1

∈ RN .

We see that F (α) =
∥∥∥∑N

i=1 αiyix
′
i

∥∥∥2
− 2

∑N
i=1 αi. We proved in the previous

section that Z ′ is linearly separable if and only if inf{F (α) : α ∈ A} > −∞,
and that the infimum is reached in this case. �

Proposition 4.1.8. Let K be a symmetric positive kernel and let Z =
(xi, yi)Ni=1 be some K-separable training set. Let α∗ ∈ A be such that F (α∗) =
inf{F (α) : α ∈ A}. Let

I∗− = {i ∈ N : 1 ≤ i ≤ N, yi = −1, α∗i > 0}
I∗+ = {i ∈ N : 1 ≤ i ≤ N, yi = +1, α∗i > 0}

b∗ =
1
2

{ N∑
j=1

α∗jyjK(xj , xi−) +
N∑
j=1

α∗jyjK(xj , xi+)
}
, i− ∈ I∗−, i+ ∈ I∗+,

where the value of b∗ does not depend on the choice of i− and i+. The
classification rule f : X→ Y defined by the formula

f(x) = sign

(
N∑
i=1

α∗i yiK(xi, x)− b∗
)

is independent of the choice of α∗ and is called the support vector machine
defined by K and Z. The set S = {xj :

∑N
i=1 α

∗
i yiK(xi, xj) − b∗ = yj} is

called the set of support vectors. For any choice of α∗, {xi : α∗i > 0} ⊂ S.

An important consequence of this proposition is that the support vector
machine defined by K and Z is also the support vector machine defined by
K and Z ′ = {(xi, yi) : α∗i > 0, 1 ≤ i ≤ N}, since this restriction of the index
set contains the value α∗ where the minimum of F is reached.

Proof. The independence of the choice of α∗, which is not necessarily
unique, is seen as follows. Let (xi)Ni=1 and x ∈ X be fixed. Let us put for ease
of notation xN+1 = x. Let M be the (N+1)×(N+1) symmetric semi-definite
matrix defined by M(i, j) = K(xi, xj), i = 1, . . . , N + 1, j = 1, . . . , N + 1.
Let us consider the mapping Ψ : {xi : i = 1, . . . , N + 1} → RN+1 defined by

Ψ(xi) =
[
M1/2(i, j)

]N+1

j=1
∈ RN+1. (4.3)
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Let us consider the training set Z ′ =
[
Ψ(xi), yi

]N
i=1

. Then Z ′ is linearly
separable,

F (α) =
∥∥∥ N∑
i=1

αiyiΨ(xi)
∥∥∥2
− 2

N∑
i=1

αi,

and we have proved that for any choice of α∗ ∈ A minimizing F (α),
wZ′ =

∑N
i=1 α

∗
i yiΨ(xi). Thus the support vector machine defined by K and

Z can also be expressed by the formula

f(x) = sign
[
〈wZ′ ,Ψ(x)〉 − bZ′

]
which does not depend on α∗. The definition of S is such that Ψ(S) is the
set of support vectors defined in the linear case, where its stated property
has already been proved. �

We can in the same way use the box constraint and show that any solution
α∗ ∈ arg min{F (α) : α ∈ A, αi ≤ λ2, i = 1, . . . , N} minimizes

inf
b∈R

λ2
N∑
i=1

[
1−

( N∑
j=1

yjαjK(xj , xi)− b
)
yi

]
+

+
1
2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi, xj). (4.4)

4.1.6. Building kernels. Except the last, the results of this section are
drawn from Cristianini et al. (2000). We have no reference for the last propo-
sition of this section, although we believe it is well known. We include them
for the convenience of the reader.

Proposition 4.1.9. Let K1 and K2 be positive symmetric kernels on X.
Then for any a ∈ R+

(aK1 +K2)(x, x′) def= aK1(x, x′) +K2(x, x′)

and (K1 ·K2)(x, x′) def= K1(x, x′)K2(x, x′)

are also positive symmetric kernels. Moreover, for any measurable function
g : X→ R, Kg(x, x′)

def= g(x)g(x′) is also a positive symmetric kernel.

Proof. It is enough to prove the proposition in the case when X is finite and
kernels are just ordinary symmetric matrices. Thus we can assume without
loss of generality that X = {1, . . . , n}. Then for any α ∈ RN , using usual
matrix notation,

〈α, (aK1 +K2)α〉 = a〈α,K1α〉+ 〈α,K2α〉 ≥ 0,

〈α, (K1 ·K2)α〉 =
∑
i,j

αiK1(i, j)K2(i, j)αj
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=
∑
i,j,k

αiK
1/2
1 (i, k)K1/2

1 (k, j)K2(i, j)αj

=
∑
k

∑
i,j

[
K

1/2
1 (k, i)αi

]
K2(i, j)

[
K

1/2
1 (k, j)αj

]
︸ ︷︷ ︸

≥0

≥ 0,

〈α,Kgα〉 =
∑
i,j

αig(i)g(j)αj =

(∑
i

αig(i)

)2

≥ 0.

�

Proposition 4.1.10. Let K be some positive symmetric kernel on X. Let
p : R → R be a polynomial with positive coefficients. Let g : X → Rd be a
measurable function. Then

p(K)(x, x′)
def
= p

[
K(x, x′)

]
,

exp(K)(x, x′)
def
= exp

[
K(x, x′)

]
and Gg(x, x′)

def
= exp

(
−‖g(x)− g(x′)‖2

)
are all positive symmetric kernels.

Proof. The first assertion is a direct consequence of the previous proposi-
tion. The second comes from the fact that the exponential function is the
pointwise limit of a sequence of polynomial functions with positive coeffi-
cients. The third is seen from the second and the decomposition

Gg(x, x′) =
[
exp
(
−‖g(x)‖2

)
exp
(
−‖g(x′)‖2

)]
exp
[
2〈g(x), g(x′)〉

]
�

Proposition 4.1.11. With the notation of the previous proposition, any
training set Z = (xi, yi)Ni=1 ∈

(
X × {−1,+1}

)N is Gg-separable as soon as
g(xi), i = 1, . . . , N are distinct points of Rd.

Proof. It is clearly enough to prove the case when X = Rd and g is the
identity. Let us consider some other generic point xN+1 ∈ Rd and define Ψ
as in (4.3). It is enough to prove that Ψ(x1), . . . ,Ψ(xN ) are affine indepen-
dent, since the simplex, and therefore any affine independent set of points,
can be split in any arbitrary way by affine half-spaces. Let us assume that
(x1, . . . , xN ) are affine dependent; then for some (λ1, . . . , λN ) 6= 0 such that∑N

i=1 λi = 0,
N∑
i=1

N∑
j=1

λiG(xi, xj)λj = 0.
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Thus, (λi)N+1
i=1 , where we have put λN+1 = 0 is in the kernel of the symmetric

positive semi-definite matrix G(xi, xj)i,j∈{1,...,N+1}. Therefore

N∑
i=1

λiG(xi, xN+1) = 0,

for any xN+1 ∈ Rd. This would mean that the functions x 7→ exp(−‖x−xi‖2)
are linearly dependent, which can be easily proved to be false. Indeed, let
n ∈ Rd be such that ‖n‖ = 1 and 〈n, xi〉, i = 1, . . . , N are distinct (such
a vector exists, because it has to be outside the union of a finite number
of hyperplanes, which is of zero Lebesgue measure on the sphere). Let us
assume for a while that for some (λi)Ni=1 ∈ RN , for any x ∈ Rd,

N∑
i=1

λi exp(−‖x− xi‖2) = 0.

Considering x = tn, for t ∈ R, we would get

N∑
i=1

λi exp(2t〈n, xi〉 − ‖xi‖2) = 0, t ∈ R.

Letting t go to infinity, we see that this is only possible if λi = 0 for all
values of i. �

4.2. Bounds for Support Vector Machines

4.2.1. Compression scheme bounds. We can use Support Vector Ma-
chines in the framework of compression schemes and apply Theorem 3.3.3
(page 153). More precisely, given some positive symmetric kernel K on X, we
may consider for any training set Z ′ = (x′i, y

′
i)
h
i=1 the classifier f̂Z′ : X → Y

which is equal to the Support Vector Machine defined by K and Z ′ whenever
Z ′ is K-separable, and which is equal to some constant classification rule
otherwise; we take this convention to stick to the framework described on
page 144, we will only use f̂Z′ in the K-separable case, so this extension of
the definition is just a matter of presentation. In the application of Theorem
3.3.3 in the case when the observed sample (Xi, Yi)Ni=1 is K-separable, a nat-
ural if perhaps sub-optimal choice of Z ′ is to choose for (x′i) the set of support
vectors defined by Z = (Xi, Yi)Ni=1 and to choose for (y′i) the corresponding
values of Y . This is justified by the fact that f̂Z = f̂Z′ , as shown in Proposi-
tion 4.1.8 (page 168). If Z is not K-separable, we can train a Support Vector
Machine with the box constraint, then remove all the errors to obtain a K-
separable sub-sample Z ′ = {(Xi, Yi) : α∗i < λ2, 1 ≤ i ≤ N}, using the same
notation as in equation (4.4) on page 169, and then consider its support vec-
tors as the compression set. Still using the notation of page 169, this means
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we have to compute successively α∗ ∈ arg min{F (α) : α ∈ A, αi ≤ λ2}, and
α∗∗ ∈ arg min{F (α) : α ∈ A, αi = 0 when α∗i = λ2}, to keep the compres-
sion set indexed by J = {i : 1 ≤ i ≤ N,α∗∗i > 0}, and the corresponding
Support Vector Machine f̂J . Different values of λ can be used at this stage,
producing different candidate compression sets: when λ increases, the num-
ber of errors should decrease, on the other hand when λ decreases, the
margin ‖w‖−1 of the separable subset Z ′ increases, supporting the hope for
a smaller set of support vectors, thus we can use λ to monitor the number
of errors on the training set we accept from the compression scheme. As we
can use whatever heuristic we want while selecting the compression set, we
can also try to threshold in the previous construction α∗∗i at different levels
η ≥ 0, to produce candidate compression sets Jη = {i : 1 ≤ i ≤ N,α∗∗i > η}
of various sizes.

As the size |J | of the compression set is random in this construction, we
must use a version of Theorem 3.3.3 (page 153) which handles compression
sets of arbitrary sizes. This is done by choosing for each k a k-partially
exchangeable posterior distribution πk which weights the compression sets
of all dimensions. We immediately see that we can choose πk such that
− log

[
πk(∆k(J))

]
≤ log

[
|J |(|J |+ 1)

]
+ |J | log

[
(k+1)eN
|J |

]
.

If we observe the shadow sample patterns, and if computer resources
permit, we can of course use more elaborate bounds than Theorem 3.3.3,
such as the transductive equivalent for Theorem 1.3.15 (page 46) (where we
may consider the submodels made of all the compression sets of the same
size). Theorems based on relative bounds, such as Theorem 2.2.4 (page 93)
or Theorem 2.3.9 (page 131) can also be used. Gibbs distributions can be
approximated by Monte Carlo techniques, where a Markov chain with the
proper invariant measure consists in appropriate local perturbations of the
compression set.

Let us mention also that the use of compression schemes based on Support
Vector Machines can be tailored to perform some kind of feature aggregation.
Imagine that the kernel K is defined as the scalar product in L2(π), where
π ∈M1

+(Θ). More precisely let us consider for some set of soft classification
rules

{
fθ : X→ R ; θ ∈ Θ

}
the kernel

K(x, x′) =
∫
θ∈Θ

fθ(x)fθ(x′)π(dθ).

In this setting, the Support Vector Machine applied to the training set Z =
(xi, yi)Ni=1 has the form

fZ(x) = sign

(∫
θ∈Θ

fθ(x)
N∑
i=1

yiαifθ(xi)π(dθ)− b

)

and, if this is too burdensome to compute, we can replace it with some finite



4.2. Bounds for Support Vector Machines 173

approximation

f̃Z(x) = sign

(
1
m

m∑
k=1

fθk(x)wk − b

)
,

where the set {θk, k = 1, . . . ,m} and the weights {wk, k = 1, . . . ,m} are
computed in some suitable way from the set Z ′ = (xi, yi)i,αi>0 of support
vectors of fZ . For instance, we can draw {θk, k = 1, . . . ,m} at random
according to the probability distribution proportional to∣∣∣∣∣

N∑
i=1

yiαifθ(xi)

∣∣∣∣∣π(dθ),

define the weights wk by

wk = sign

(
N∑
i=1

yiαifθk(xi)

)∫
θ∈Θ

∣∣∣∣∣
N∑
i=1

yiαifθ(xi)

∣∣∣∣∣π(dθ),

and choose the smallest value of m for which this approximation still clas-
sifies Z ′ without errors. Let us remark that we have built f̃Z in such a way
that

lim
m→+∞

f̃Z(xi) = fZ(xi) = yi, a.s.

for any support index i such that αi > 0.
Alternatively, given Z ′, we can select a finite set of features Θ′ ⊂ Θ such

that Z ′ is KΘ′ separable, where KΘ′(x, x′) =
∑

θ∈Θ′ fθ(x)fθ(x′) and consider
the Support Vector Machines fZ′ built with the kernel KΘ′ . As soon as Θ′

is chosen as a function of Z ′ only, Theorem 3.3.3 (page 153) applies and
provides some level of confidence for the risk of fZ′ .

4.2.2. The Vapnik–Cervonenkis dimension of a family of subsets.
Let us consider some set X and some set S ⊂ {0, 1}X of subsets of X. Let
h(S) be the Vapnik–Cervonenkis dimension of S, defined as

h(S) = max
{
|A| : A ⊂ X, |A| <∞ and A ∩ S = {0, 1}A

}
,

where by definition A∩S = {A∩B : B ∈ S} and |A| is the number of points
in A. Let us notice that this definition does not depend on the choice of the
reference set X. Indeed X can be chosen to be

⋃
S, the union of all the sets

in S or any bigger set. Let us notice also that for any set B, h(B∩S) ≤ h(S),
the reason being that A ∩ (B ∩ S) = B ∩ (A ∩ S).

This notion of Vapnik–Cervonenkis dimension is useful because, as we
will see for Support Vector Machines, it can be computed in some important
special cases. Let us prove here as an illustration that h(S) = d + 1 when
X = Rd and S is made of all the half spaces:

S = {Aw,b : w ∈ Rd, b ∈ R}, where Aw,b = {x ∈ X : 〈w, x〉 ≥ b}.
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Proposition 4.2.1. With the previous notation, h(S) = d+ 1.

Proof. Let (ei)d+1
i=1 be the canonical base of Rd+1, and let X be the affine

subspace it generates, which can be identified with Rd. For any (εi)d+1
i=1 ∈

{−1,+1}d+1, let w =
∑d+1

i=1 εiei and b = 0. The half space Aw,b ∩X is such
that {ei ; i = 1, . . . , d + 1} ∩ (Aw,b ∩ X) = {ei ; εi = +1}. This proves that
h(S) ≥ d+ 1.

To prove that h(S) ≤ d+1, we have to show that for any set A ⊂ Rd of size
|A| = d+2, there is B ⊂ A such that B 6∈ (A∩S). Obviously this will be the
case if the convex hulls of B and A\B have a non-empty intersection: indeed
if a hyperplane separates two sets of points, it also separates their convex
hulls. As |A| > d + 1, A is affine dependent: there is (λx)x∈A ∈ Rd+2 \ {0}
such that

∑
x∈A λxx = 0 and

∑
x∈A λx = 0. The set B = {x ∈ A : λx > 0}

and its complement A \B are non-empty, because
∑

x∈A λx = 0 and λ 6= 0.
Moreover

∑
x∈B λx =

∑
x∈A\B −λx > 0. The relation

1∑
x∈B λx

∑
x∈B

λxx =
1∑

x∈B λx

∑
x∈A\B

−λxx

shows that the convex hulls of B and A \B have a non-void intersection. �
Let us introduce the function of two integers

Φh
n =

h∑
k=0

(
n

k

)
,

which can alternatively be defined by the relations

Φh
n =

{
2n when n ≤ h,
Φh−1
n−1 + Φh

n−1 when n > h.

Theorem 4.2.2. Whenever
⋃
S is finite,

|S| ≤ Φ
(∣∣∣⋃S

∣∣∣ , h(S)
)
.

Theorem 4.2.3. For any h ≤ n,

Φh
n ≤ exp

[
nH
(
h
n

)]
≤ exp

[
h
(
log(nh ) + 1

)]
,

where H(p) = −p log(p) − (1 − p) log(1 − p) is the Shannon entropy of the
Bernoulli distribution with parameter p.

Proof of theorem 4.2.2. Let us prove this theorem by induction on |
⋃
S|.

It is easy to check that it holds true when |
⋃
S| = 1. Let X =

⋃
S, let x ∈ X

and X ′ = X \{x}. Define (4 denoting the symmetric difference of two sets)

S′ = {A ∈ S : A4 {x} ∈ S},
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S′′ = {A ∈ S : A4 {x} 6∈ S}.

Clearly, t denoting the disjoint union, S = S′tS′′ and S ∩X ′ = (S′∩X ′)t
(S′′ ∩X ′). Moreover |S′| = 2|S′ ∩X ′| and |S′′| = |S′′ ∩X ′|. Thus

|S| = |S′|+ |S′′| = 2|S′ ∩X ′|+ |S′′| = |S ∩X ′|+ |S′ ∩X ′|.

Obviously h(S ∩ X ′) ≤ h(S). Moreover h(S′ ∩ X ′) = h(S′) − 1, because if
A ⊂ X ′ is shattered by S′ (or equivalently by S′ ∩ X ′), then A ∪ {x} is
shattered by S′ (we say that A is shattered by S when A ∩ S = {0, 1}A).
Using the induction hypothesis, we then see that |S∩X ′| ≤ Φh(S)

|X′| +Φh(S)−1
|X′| .

But as |X ′| = |X|−1, the right-hand side of this inequality is equal to Φh(S)
|X| ,

according to the recurrence equation satisfied by Φ.
Proof of theorem 4.2.3: This is the well-known Chernoff bound for

the deviation of sums of Bernoulli random variables: let (σ1, . . . , σn) be i.i.d.
Bernoulli random variables with parameter 1/2. Let us notice that

Φh
n = 2nP

(
n∑
i=1

σi ≤ h

)
.

For any positive real number λ ,

P

( n∑
i=1

σi ≤ h
)
≤ exp(λh)E

[
exp
(
−λ

n∑
i=1

σi

)]
= exp

{
λh+ n log

{
E
[
exp
(
−λσ1

)]}}
.

Differentiating the right-hand side in λ shows that its minimal value is
exp
[
−nK(hn ,

1
2)
]
, where K(p, q) = p log(pq ) + (1 − p) log(1−p

1−q ) is the Kull-
back divergence function between two Bernoulli distributions Bp and Bq of
parameters p and q. Indeed the optimal value λ∗ of λ is such that

h = n
E
[
σ1 exp(−λ∗σ1)

]
E
[
exp(−λ∗σ1)

] = nBh/n(σ1).

Therefore, using the fact that two Bernoulli distributions with the same
expectations are equal,

log
{
E
[
exp(−λ∗σ1)

]}
= −λ∗Bh/n(σ1)−K(Bh/n, B1/2) = −λ∗ hn −K(hn ,

1
2).

The announced result then follows from the identity

H(p) = log(2)−K(p, 1
2)

= p log(p−1) + (1− p) log(1 +
p

1− p
) ≤ p

[
log(p−1) + 1

]
.
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4.2.3. Vapnik–Cervonenkis dimension of linear rules with mar-
gin. The proof of the following theorem was suggested to us by a similar
proof presented in Cristianini et al. (2000).

Theorem 4.2.4. Consider a family of points (x1, . . . , xn) in some Eu-
clidean vector space E and a family of affine functions

H =
{
gw,b : E → R ;w ∈ E, ‖w‖ = 1, b ∈ R

}
,

where
gw,b(x) = 〈w, x〉 − b, x ∈ E.

Assume that there is a set of thresholds (bi)ni=1 ∈ Rn such that for any
(yi)ni=1 ∈ {−1,+1}n, there is gw,b ∈ H such that

n
inf
i=1

(
gw,b(xi)− bi

)
yi ≥ γ.

Let us also introduce the empirical variance of (xi)ni=1,

Var(x1, . . . , xn) =
1
n

n∑
i=1

∥∥∥∥xi − 1
n

n∑
j=1

xj

∥∥∥∥2

.

In this case and with this notation,

Var(x1, . . . , xn)
γ2

≥

{
n− 1 when n is even,
(n− 1)n

2−1
n2 when n is odd.

(4.5)

Moreover, equality is reached when γ is optimal, bi = 0, i = 1, . . . , n and
(x1, . . . , xn) is a regular simplex (i.e. when 2γ is the minimum distance
between the convex hulls of any two subsets of {x1, . . . , xn} and ‖xi − xj‖
does not depend on i 6= j).

Proof. Let (si)ni=1 ∈ Rn be such that
∑n

i=1 si = 0. Let σ be a uniformly
distributed random variable with values in Sn, the set of permutations of
the first n integers {1, . . . , n}. By assumption, for any value of σ, there is
an affine function gw,b ∈ H such that

min
i=1,...,n

[
gw,b(xi)− bi

][
21(sσ(i) > 0)− 1

]
≥ γ.

As a consequence〈
n∑
i=1

sσ(i)xi, w

〉
=

n∑
i=1

sσ(i)

(
〈xi, w〉 − b− bi

)
+

n∑
i=1

sσ(i)bi

≥
n∑
i=1

γ|sσ(i)|+ sσ(i)bi.
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Therefore, using the fact that the map x 7→
(

max
{

0, x
})2

is convex,

E

(∥∥∥∥ n∑
i=1

sσ(i)xi

∥∥∥∥2
)
≥ E

(max

{
0,

n∑
i=1

γ|sσ(i)|+ sσ(i)bi

})2


≥

(
max

{
0,

n∑
i=1

γE
(
|sσ(i)|

)
+ E

(
sσ(i)

)
bi

})2

= γ2

(
n∑
i=1

|si|

)2

,

where E is the expectation with respect to the random permutation σ. On
the other hand

E

(∥∥∥∥ n∑
i=1

sσ(i)xi

∥∥∥∥2
)

=
n∑
i=1

E(s2
σ(i))‖xi‖

2 +
∑
i 6=j
E(sσ(i)sσ(j))〈xi, xj〉.

Moreover

E(s2
σ(i)) =

1
n
E

(
n∑
i=1

s2
σ(i)

)
=

1
n

n∑
i=1

s2
i .

In the same way, for any i 6= j,

E
(
sσ(i)sσ(j)

)
=

1
n(n− 1)

E

∑
i 6=j

sσ(i)sσ(j)


=

1
n(n− 1)

∑
i 6=j

sisj

=
1

n(n− 1)

[(
n∑
i=1

si︸ ︷︷ ︸
=0

)2

−
n∑
i=1

s2
i

]

= − 1
n(n− 1)

n∑
i=1

s2
i .

Thus

E

(∥∥∥∥ n∑
i=1

sσ(i)xi

∥∥∥∥2
)

=

(
n∑
i=1

s2
i

) 1
n

n∑
i=1

‖xi‖2 −
1

n(n− 1)

∑
i 6=j
〈xi, xj〉


=

(
n∑
i=1

s2
i

)[(
1
n

+
1

n(n− 1)

) n∑
i=1

‖xi‖2

− 1
n(n− 1)

∥∥∥∥ n∑
i=1

xi

∥∥∥∥2
]

=
n

n− 1

(
n∑
i=1

s2
i

)
Var(x1, . . . , xn).
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We have proved that

Var(x1, . . . , xn)
γ2

≥
(n− 1)

( n∑
i=1

|si|
)2

n

n∑
i=1

s2
i

.

This can be used with si = 1(i ≤ n
2 )− 1(i > n

2 ) in the case when n is even
and si = 2

(n−1)1(i ≤ n−1
2 ) − 2

n+11(i > n−1
2 ) in the case when n is odd, to

establish the first inequality (4.5) of the theorem.
Checking that equality is reached for the simplex is an easy computation

when the simplex (xi)ni=1 ∈ (Rn)n is parametrized in such a way that

xi(j) =

{
1 if i = j,

0 otherwise.

Indeed the distance between the convex hulls of any two subsets of the
simplex is the distance between their mean values (i.e. centers of mass). �

4.2.4. Application to Support Vector Machines. We are going to
apply Theorem 4.2.4 (page 176) to Support Vector Machines in the trans-
ductive case. Let (Xi, Yi)

(k+1)N
i=1 be distributed according to some partially

exchangeable distribution P and assume that (Xi)
(k+1)N
i=1 and (Yi)Ni=1 are ob-

served. Let us consider some positive kernel K on X. For any K-separable
training set of the form Z ′ = (Xi, y

′
i)

(k+1)N
i=1 , where (y′i)

(k+1)N
i=1 ∈ Y(k+1)N , let

f̂Z′ be the Support Vector Machine defined by K and Z ′ and let γ(Z ′) be
its margin. Let

R2 = max
i=1,...,(k+1)N

K(Xi, Xi) +
1

(k + 1)2N2

(k+1)N∑
j=1

(k+1)N∑
k=1

K(Xj , Xk)

− 2
(k + 1)N

(k+1)N∑
j=1

K(Xi, Xj).

This is an easily computable upper-bound for the radius of some ball con-
taining the image of (X1, . . . , X(k+1)N ) in feature space.

Let us define for any integer h the margins

γ2h = (2h− 1)−1/2 and γ2h+1 =
[
2h
(

1− 1
(2h+ 1)2

)]−1/2

. (4.6)

Let us consider for any h = 1, . . . , N the exchangeable model

Rh =
{
f̂Z′ : Z ′ = (Xi, y

′
i)

(k+1)N
i=1 is K-separable and γ(Z ′) ≥ Rγh

}
.
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The family of models Rh, h = 1, . . . , N is nested, and we know from Theorem
4.2.4 (page 176) and Theorems 4.2.2 (page 174) and 4.2.3 (page 174) that

log
(
|Rh|

)
≤ h log

( (k+1)eN
h

)
.

We can then consider on the large model R =
⊔N
h=1 Rh (the disjoint union of

the sub-models) an exchangeable prior π which is uniform on each Rh and
is such that π(Rh) ≥ 1

h(h+1) . Applying Theorem 3.2.3 (page 143) we get

Proposition 4.2.5. With P probability at least 1−ε, for any h = 1, . . . , N ,
any Support Vector Machine f ∈ Rh,

r2(f) ≤

k + 1
k

inf
λ∈R+

1− exp
[
− λ
N r1(f)− h

N log
(
e(k+1)N

h

)
− log[h(h+1)]−log(ε)

N

]
1− exp(− λ

N )

− r1(f)
k

.

Searching the whole model Rh to optimize the bound may require more
computer resources than are available, but any heuristic can be applied to
choose f , since the bound is uniform. For instance, a Support Vector Machine
f ′ using a box constraint can be trained from the training set (Xi, Yi)Ni=1

and then (y′i)
(k+1)N
i=1 can be set to y′i = sign(f ′(Xi)), i = 1, . . . , (k + 1)N .

4.2.5. Inductive margin bounds for Support Vector Machines.
In order to establish inductive margin bounds, we will need a different com-
binatorial lemma. It is due to Alon et al. (1997). We will reproduce their
proof with some tiny improvements on the values of constants.

Let us consider the finite case when X = {1, . . . , n}, Y = {1, . . . , b} and
b ≥ 3. The question we will study would be meaningless when b ≤ 2. Assume
as usual that we are dealing with a prescribed set of classification rules
R =

{
f : X → Y

}
. Let us say that a pair (A, s), where A ⊂ X is a non-

empty set of shapes and s : A → {2, . . . , b − 1} a threshold function, is
shattered by the set of functions F ⊂ R if for any (σx)x∈A ∈ {−1,+1}A,
there exists some f ∈ F such that minx∈A σx

[
f(x)− s(x)

]
≥ 1.

Definition 4.2.1. Let the fat shattering dimension of (X,R) be the max-
imal size |A| of the first component of the pairs which are shattered by
R.

Let us say that a subset of classification rules F ⊂ YX is separated when-
ever for any pair (f, g) ∈ F 2 such that f 6= g, ‖f − g‖∞ = maxx∈X|f(x) −
g(x)| ≥ 2. Let M(R) be the maximum size |F | of separated subsets F of
R. Note that if F is a separated subset of R such that |F | = M(R), then it
is a 1-net for the L∞ distance: for any function f ∈ R there exists g ∈ F
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such that ‖f − g‖∞ ≤ 1 (otherwise f could be added to F to create a larger
separated set).

Lemma 4.2.6. With the above notation, whenever the fat shattering di-
mension of (X,R) is not greater than h,

log
[
M(R)

]
< log

[
(b− 1)(b− 2)n

]{ log
[∑h

i=1

(
n
i

)
(b− 2)i

]
log(2)

+ 1

}
+ log(2)

≤ log
[
(b− 1)(b− 2)n

]{[
log
[

(b−2)n
h

]
+ 1
]

h

log(2)
+ 1

}
+ log(2).

Proof. For any set of functions F ⊂ YX, let t(F ) be the number of pairs
(A, s) shattered by F . Let t(m,n) be the minimum of t(F ) over all separated
sets of functions F ⊂ YX of size |F | = m (n is here to recall that the shape
space X is made of n shapes). For any m such that t(m,n) >

∑h
i=1

(
n
i

)
(b−2)i,

it is clear that any separated set of functions of size |F | ≥ m shatters at
least one pair (A, s) such that |A| > h. Indeed, from its definition t(m,n) is
clearly a non-decreasing function of m, so that t(|F |, n) >

∑h
i=1

(
n
i

)
(b− 2)i.

Moreover there are only
∑h

i=1

(
n
i

)
(b−2)i pairs (A, s) such that |A| ≤ h. As a

consequence, whenever the fat shattering dimension of (X,R) is not greater
than h we have M(R) < m.

It is clear that for any n ≥ 1, t(2, n) = 1.

Lemma 4.2.7. For any m ≥ 1, t
[
mn(b − 1)(b − 2), n

]
≥ 2t

[
m,n − 1

]
, and

therefore t
[
2n(n− 1) . . . (n− r + 1)(b− 1)r(b− 2)r, n

]
≥ 2r.

Proof. Let F = {f1, . . . , fmn(b−1)(b−2)} be some separated set of functions
of size mn(b−1)(b−2). For any pair (f2i−1, f2i), i = 1, . . . ,mn(b−1)(b−2)/2,
there is xi ∈ X such that |f2i−1(xi) − f2i(xi)| ≥ 2. Since |X| = n, there
is x ∈ X such that

∑mn(b−1)(b−2)/2
i=1 1(xi = x) ≥ m(b − 1)(b − 2)/2. Let

I = {i : xi = x}. Since there are (b − 1)(b − 2)/2 pairs (y1, y2) ∈ Y2

such that 1 ≤ y1 < y2 − 1 ≤ b − 1, there is some pair (y1, y2), such that
1 ≤ y1 < y2 ≤ b and such that

∑
i∈I 1({y1, y2} = {f2i−1(x), f2i(x)}) ≥ m.

Let J =
{
i ∈ I : {f2i−1(x), f2i(x)} = {y1, y2}

}
. Let

F1 = {f2i−1 : i ∈ J, f2i−1(x) = y1} ∪ {f2i : i ∈ J, f2i(x) = y1},
F2 = {f2i−1 : i ∈ J, f2i−1(x) = y2} ∪ {f2i : i ∈ J, f2i(x) = y2}.

Obviously |F1| = |F2| = |J | = m. Moreover the restrictions of the functions
of F1 to X \ {x} are separated, and it is the same with F2. Thus F1 strongly
shatters at least t(m,n− 1) pairs (A, s) such that A ⊂ X \ {x} and it is the
same with F2. Finally, if the pair (A, s) where A ⊂ X\{x} is both shattered
by F1 and F2, then F1 ∪ F2 shatters also (A ∪ {x}, s′) where s′(x′) = s(x′)
for any x′ ∈ A and s′(x) = by1+y2

2 c. Thus F1 ∪F2, and therefore F , shatters
at least 2t(m,n− 1) pairs (A, s). �
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Resuming the proof of lemma 4.2.6, let us choose for r the smallest integer
such that 2r >

∑h
i=1

(
n
i

)
(b− 2)i, which is no greater than{

log
[Ph

i=1 (ni)(b−2)i
]

log(2) + 1
}

.

In the case when 1 ≤ n ≤ r,

log(M(R)) < |X| log(|Y|) = n log(b) ≤ r log(b) ≤ r log
[
(b−1)(b−2)n

]
+log(2),

which proves the lemma. In the remaining case n > r,

t
[
2nr(b− 1)r(b− 2)r, n

]
≥ t
[
2n(n− 1) . . . (n− r + 1)(b− 1)r(b− 2)r, n

]
>

h∑
i=1

(
n

i

)
(b− 2)i.

Thus |M(R)| < 2
[
(b− 2)(b− 1)n

]r
as claimed. �

In order to apply this combinatorial lemma to Support Vector Machines,
let us consider now the case of separating hyperplanes in Rd (the gener-
alization to Support Vector Machines being straightforward). Assume that
X = Rd and Y = {−1,+1}. For any sample (X)(k+1)N

i=1 , let

R(X(k+1)N
1 ) = max{‖Xi‖ : 1 ≤ i ≤ (k + 1)N}.

Let us consider the set of parameters

Θ =
{

(w, b) ∈ Rd ×R : ‖w‖ = 1
}
.

For any (w, b) ∈ Θ, let gw,b(x) = 〈w, x〉 − b. Let h be some fixed integer and
let γ = R(X(k+1)N

1 )γh, where γh is defined by equation (4.6, page 178).
Let us define ζ : R→ Z by

ζ(r) =



−5 when r ≤ −4γ,
−3 when −4γ <r ≤ −2γ,
−1 when −2γ <r ≤ 0,
+1 when 0 <r ≤ 2γ,
+3 when 2γ <r ≤ 4γ,
+5 when 4γ <r.

Let Gw,b(x) = ζ
[
gw,b(x)

]
. The fat shattering dimension (as defined in 4.2.1)

of (
X

(k+1)N
1 ,

{
(Gw,b + 7)/2 : (w, b) ∈ Θ

})
is not greater than h (according to Theorem 4.2.4, page 176), therefore there
is some set F of functions from X

(k+1)N
1 to {−5,−3,−1,+1,+3,+5} such
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that

log
(
|F|
)
≤ log

[
20(k + 1)N

]{ h

log(2)

[
log
(

4(k + 1)N
h

)
+ 1
]

+ 1

}
+ log(2).

and for any (w, b) ∈ Θ, there is fw,b ∈ F such that sup
{
|fw,b(Xi)−Gw,b(Xi)| :

i = 1, . . . , (k + 1)N
}
≤ 2. Moreover, the choice of fw,b may be required to

depend on (Xi)
(k+1)N
i=1 in an exchangeable way. Similarly to Theorem 3.2.3

(page 143), it can be proved that for any partially exchangeable probability
distribution P ∈M1

+(Ω), with P probability at least 1− ε, for any fw,b ∈ F,

1
kN

(k+1)N∑
i=N+1

1
[
fw,b(Xi)Yi ≤ 1

]
≤ k + 1

k
inf
λ∈R+

[
1− exp(− λ

N )
]−1
{

1−

exp
[
− λ

N2

N∑
i=1

1
[
fw,b(Xi)Yi ≤ 1

]
−

log
(
|F|
)
− log(ε)
N

]}

− 1
kN

N∑
i=1

1
[
fw,b(Xi)Yi ≤ 1

]
.

Let us remark that

1
{

21
[
gw,b(Xi) ≥ 0

]
− 1 6= Yi

}
= 1

[
Gw,b(Xi)Yi < 0

]
≤ 1

[
fw,b(Xi)Yi ≤ 1

]
and

1
[
fw,b(Xi)Yi ≤ 1

]
≤ 1

[
Gw,b(Xi)Yi ≤ 3

]
≤ 1

[
gw,b(Xi)Yi ≤ 4γ

]
.

This proves the following theorem.

Theorem 4.2.8. Let us consider the sequence (γh)h∈N∗ defined by equation
(4.6, page 178). With P probability at least 1− ε, for any (w, b) ∈ Θ,

1
kN

(k+1)N∑
i=N+1

1
{

21
[
gw,b(Xi) ≥ 0

]
− 1 6= Yi

}
≤ k + 1

k
inf

λ∈R+,h∈N∗

[
1− exp(− λ

N )
]−1

{
1−

exp

[
− λ

N2

N∑
i=1

1
[
gw,b(Xi)Yi ≤ 4Rγh

]
−

log
[
20(k + 1)N

]{
h

log(2) log
(

4e(k+1)N
h

)
+ 1
}

+ log
[

2h(h+1)
ε

]
N

]}
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− 1
kN

N∑
i=1

1
[
gw,b(Xi)Yi ≤ 4Rγh

]
.

Properly speaking this theorem is not a margin bound, but more precisely
a margin quantile bound, since it covers the case where some fraction of the
training sample falls within the region defined by the margin parameter γh
which optimizes the bound.

As a consequence though, we get a true (weaker) margin bound: with P
probability at least 1− ε, for any (w, b) ∈ Θ such that

γ = min
i=1,...,N

gw,b(Xi)Yi > 0,

1
kN

(k+1)N∑
i=N+1

1
[
gw,b(Xi)Yi < 0

]
≤ k+1

k

{
1− exp

[
− log

[
20(k+1)N

]
N

{
16R2+2γ2

log(2)γ2 log
(
e(k+1)Nγ2

4R2

)
+ 1
}

+
1
N

log( ε2)
]}
.

This inequality compares favourably with similar inequalities in Cristianini
et al. (2000), which moreover do not extend to the margin quantile case as
this one.

Let us also mention that it is easy to circumvent the fact that R is not
observed when the test set X(k+1)N

N+1 is not observed.

Indeed, we can consider the sample obtained by projecting X
(k+1)N
1 on

some ball of fixed radius Rmax, putting

tRmax(Xi) = min
{

1,
Rmax

‖Xi‖

}
Xi.

We can further consider an atomic prior distribution ν ∈ M1
+(R+) bearing

on Rmax, to obtain a uniform result through a union bound. As a conse-
quence of the previous theorem, we have

Corollary 4.2.9. For any atomic prior ν ∈ M1
+(R+), for any partially

exchangeable probability measure P ∈ M1
+(Ω), with P probability at least

1− ε, for any (w, b) ∈ Θ, any Rmax ∈ R+,
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1
kN

(k+1)N∑
i=N+1

1
{

21
[
gw,b ◦ tRmax(Xi) ≥ 0

]
− 1 6= Yi

}
≤ k + 1

k
inf

λ∈R+,h∈N∗

[
1− exp(− λ

N )
]−1

{
1−

exp

[
− λ

N2

N∑
i=1

1
[
gw,b ◦ tRmax(Xi)Yi ≤ 4Rmaxγh

]
−

log
[
20(k + 1)N

]{
h

log(2) log
(

4e(k+1)N
h

)
+ 1
}

+ log
[

2h(h+1)
εν(Rmax)

]
N

]}

− 1
kN

N∑
i=1

1
[
gw,b ◦ tRmax(Xi)Yi ≤ 4Rmaxγh

]
.

Let us remark that tRmax(Xi) = Xi, i = N + 1, . . . , (k + 1)N , as soon as we
consider only the values of Rmax not smaller than maxi=N+1,...,(k+1)N‖Xi‖
in this corollary. Thus we obtain a bound on the transductive generalization
error of the unthresholded classification rule 21

[
gw,b(Xi) ≥ 0

]
− 1, as well

as some incitation to replace it with a thresholded rule when the value of
Rmax minimizing the bound falls below maxi=N+1,...,(k+1)N‖Xi‖.



Appendix: classification by
thresholding

In this appendix, we show how the bounds given in the first section of this
monograph can be computed in practice on a simple example: the case when
the classification is performed by comparing a series of measurements to
threshold values. Let us mention that our description covers the case when
the same measurement is compared to several thresholds, since it is enough
to repeat a measurement in the list of measurements describing a pattern
to cover this case.

5.1. Description of the model

Let us assume that the patterns we want to classify are described through
h real valued measurements normalized in the range (0, 1). In this setting
the pattern space can thus be defined as X = (0, 1)h.

Consider the threshold set T = (0, 1)h and the response set R = Y{0,1}
h
.

For any t ∈ (0, 1)h and any a : {0, 1}h → Y, let

f(t,a)(x) = a
{[
1(xj ≥ tj)

]h
j=1

}
, x ∈ X,

where xj is the jth coordinate of x ∈ X. Thus our parameter set here is
Θ = T × R. Let us consider the Lebesgue measure L on T and the uniform
probability distribution U on R. Let our prior distribution be π = L ⊗ U .
Let us define for any threshold sequence t ∈ T

∆t =
{
t′ ∈ T : (t′j , tj) ∩ {X

j
i ; i = 1, . . . , N} = ∅, j = 1, . . . , h

}
,

where Xj
i is the jth coordinate of the sample pattern Xi, and where the

interval (t′j , tj) of the real line is defined as the convex hull of the two point
set {t′j , tj}, whether t′j ≤ tj or not. We see that ∆t is the set of thresholds
giving the same response as t on the training patterns. Let us consider for
any t ∈ T the middle

m(∆t) =

∫
∆t
t′L(dt′)
L(∆t)

185
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of ∆t. The set ∆t being a product of intervals, its middle is the point whose
coordinates are the middle of these intervals. Let us introduce the finite set
T composed of the middles of the cells ∆t, which can be defined as

T = {t ∈ T : t = m(∆t)}.

It is easy to see that |T | ≤ (N + 1)h and that |R| = |Y|2h .

5.2. Computation of inductive bounds

For any parameter (t, a) ∈ T × R = Θ, let us consider the posterior
distribution defined by its density

dρ(t,a)

dπ
(t′, a′) =

1
(
t′ ∈ ∆t

)
1
(
a′ = a

)
π
(
∆t × {a}

) .

In fact we are considering a finite number of posterior distributions, since
ρ(t,a) = ρ(m(∆t),a), where m(∆t) ∈ T . Moreover, for any exchangeable sample
distribution P ∈M1

+

[
(X× Y)N+1

]
and any thresholds t ∈ T,

P
[

(Xj
N+1, tj) ∩ {X

j
i , i = 1, . . . , N} = ∅

]
≤ 2
N + 1

.

Thus, for any (t, a) ∈ Θ,

P
{
ρ(t,a)

[
f.(XN+1)

]
6= f(t,a)(XN+1)

}
≤ 2h
N + 1

,

showing that the classification produced by ρ(t,a) on new examples is typi-
cally non-random; this result is only indicative, since it is concerned with a
non-random choice of (t, a).

Let us compute the various quantities needed to apply the results of the
first section, focussing our attention on Theorem 2.1.3 (page 72).

First note that ρ(t,a)(r) = r[(t, a)]. The entropy term is such that

K(ρt,a, π) = − log
[
π
(
∆t × {r}

)]
= − log

[
L(∆t)

]
+ 2h log

(
|Y|
)
.

Let us notice accordingly that

min
(t,a)∈Θ

K(ρ(t,a), π) ≤ h log(N + 1) + 2h log
(
|Y|
)
.

Let us introduce the counters

bty(c) =
1
N

N∑
i=1

1
{
Yi = y and

[
1(Xj

i ≥ tj)
]h
j=1

= c
}
,

t ∈ T, c ∈ {0, 1}h, y ∈ Y,
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bt(c) =
∑
y∈Y

bty(c) =
1
N

N∑
i=1

1
{[
1(Xj

i ≥ tj)
]h
j=1

= c
}
, t ∈ T, c ∈ {0, 1}h.

Since
r[(t, a)] =

∑
c∈{0,1}h

[
bt(c)− bta(c)(c)

]
,

the partition function of the Gibbs estimator can be computed as

π
[
exp(−λr)

]
=
∑
t∈T

L(∆t)
∑
a∈R

1
|Y|2h

exp
[
−λ

N∑
i=1

1
[
Yi 6= f(t,a)(Xi)

]]
=
∑
t∈T

L(∆t)
∑
a∈R

1
|Y|2h

exp
[
−λ

∑
c∈{0,1}h

[
bt(c)− bta(c)(c)

]]

=
∑
t∈T

L(∆t)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c)− bty(c)

])]
.

We see that the number of operations needed to compute π
[
exp(−λr)

]
is

proportional to |T | × 2h × |Y| ≤ (N + 1)h2h|Y|. An exact computation will
therefore be feasible only for small values of N and h. For higher values, a
Monte Carlo approximation of this sum will have to be performed instead.

If we want to compute the bound provided by Theorem 2.1.3 (page 72)
or by Theorem 2.2.2 (page 89), we need also to compute, for any fixed
parameter θ ∈ Θ, quantities of the type

πexp(−λr)

{
exp
[
ξm′(·, θ)

]}
= πexp(−λr)

{
exp
[
ξρθ(m′)

]}
, λ, ξ ∈ R+.

We need to introduce

b
t
y(θ, c) =

1
N

N∑
i=1

∣∣∣1[fθ(Xi) 6= Yi
]
− 1(y 6= Yi)

∣∣∣1{[1(Xj
i ≥ tj)

]h
j=1

= c
}
.

Similarly to what has been done previously, we obtain

π
{

exp
[
−λr + ξm′(·, θ)

]}
=
∑
t∈T

L(∆t)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c)− bty(c)

]
+ ξb

t
y(θ, c)

)]
.

We can then compute

πexp(−λr)(r) = − ∂

∂λ
log
{
π
[
exp(−λr)

]}
,

πexp(−λr)

{
exp
[
ξρθ(m′)

]}
=
π
{

exp
[
−λr + ξm′(·, θ)

]}
π
[
exp(−λr)

] ,
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πexp(−λr)
[
m′(·, θ)

]
=

∂

∂ξ |ξ=0

log
[
π
{

exp
[
−λr + ξm′(·, θ)

]}]
.

This is all we need to compute B(ρθ, β, γ) (and also B(πexp(−λr), β, γ)) in
Theorem 2.1.3 (page 72), using the approximation

log
{
πexp(−λ1r)

[
exp
{
ξπexp(−λ2r)(m

′)
}]}

≤ log
{
πexp(−λ1r)

[
exp
{
ξm′(·, θ)

}]}
+ ξπexp(−λ2r)

[
m′(·, θ)

]
, ξ ≥ 0.

Let us also explain how to apply the posterior distribution ρ(t,a), in other
words our randomized estimated classification rule, to a new pattern XN+1:

ρ(t,a)

[
f·(XN+1) = y

]
= L(∆t)−1

∫
∆t

1
[
a
{[
1(Xj

N+1 ≥ t
′
j)
]h
j=1

}
= y
]
L(dt′)

= L(∆t)−1
∑

c∈{0,1}h
L
({
t′ ∈ ∆t :

[
1(Xj

N+1 ≥ t
′
j)
]h
j=1

= c
})
1
[
a(c) = y

]
.

Let us define for short

∆t(c) =
{
t′ ∈ ∆t :

[
1(Xj

N+1 ≥ t
′
j)
]h
j=1

= c
}
, c ∈ {0, 1}h.

With this notation

ρ(t,a)

[
f.(XN+1) = y

]
= L

(
∆t

)−1
∑

c∈{0,1}h
L
[
∆t(c)

]
1
[
a(c) = y

]
.

We can compute in the same way the probabilities for the label of the new
pattern under the Gibbs posterior distribution:

πexp(−λr)
[
f·(XN+1) = y′

]
=

{∑
t∈T

∏
c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c)− bty(c)

])]

×
∑

c∈{0,1}h
L
[
∆t(c)

]∑y∈Y 1(y = y′) exp
{
−λ
[
bt(c)− bty(c)

]}∑
y∈Y exp

{
−λ
[
bt(x)− bty(c)

]} }

×

{∑
t∈T

L(∆t)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c)− bty(c)

])]}−1

.

5.3. Transductive bounds

In the case when we observe the patterns of a shadow sample (Xi)
(k+1)N
i=N+1

on top of the training sample (Xi, Yi)Ni=1, we can introduce the set of thresh-
olds responding as t on the extended sample (Xi)

(k+1)N
i=1

∆t =
{
t′ ∈ T : (t′j , tj) ∩

{
Xj
i ; i = 1, . . . , (k + 1)N} = ∅, j = 1, . . . , h

}
,
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consider the set
T =

{
t ∈ T : t = m(∆t)

}
,

of the middle points of the cells ∆t, t ∈ T, and replace the Lebesgue mea-
sure L ∈ M1

+

[
(0, 1)h

]
of the previous section with the uniform probabil-

ity measure L on T . We can then consider π = L ⊗ U , where U is as
previously the uniform probability measure on R. This gives obviously an
exchangeable posterior distribution and therefore qualifies π for transduc-
tive bounds. Let us notice that |T | ≤

[
(k + 1)N + 1

]h, and therefore that
π(t, a) ≥

[
(k + 1)N + 1

]−h|Y|−2h , for any (t, a) ∈ T × R.
For any (t, a) ∈ T×R we may similarly to the inductive case consider the

posterior distribution ρ(t,a) defined by

dρ(t,a)

dπ
(t′, a′) =

1(t′ ∈ ∆t)1(a′ = a)
π
(
∆t × {a})

,

but we may also consider δ(m(∆t),a), which is such that ri{[m(∆t), a]} =
ri[(t, a)], i = 1, 2, whereas only ρ(t,a)(r1) = r1[(t, a)], while

ρ(t,a)(r2) =
1

|T ∩∆t|

∑
t′∈T∩∆t

r2[(t′, a)].

We get

K(ρ(t,a), π) = − log
[
L(∆t)

]
+ 2h log

(
|Y|
)

≤ log
(
|T |
)

+ 2h log(|Y|) = K(δ[m(∆t),a], π)

≤ h log
[
(k + 1)N + 1

]
+ 2h log(|Y|),

whereas we had no such uniform bound in the inductive case. Similarly to
the inductive case

π
[
exp(−λr1)

]
=
∑
t∈T

L(∆t)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c)− bty(c)

])]
.

Moreover, for any θ ∈ Θ,

π
{

exp
[
−λr1 + ξρθ(m′)

]}
= π

{
exp
[
−λr1 + ξm′(·, θ)

]}
=
∑
t∈T

L(∆t)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c)− bty(c)

]
+ ξb(θ, c)

)]
.

The bound for the transductive counterpart to Theorems 2.1.3 (page 72) or
2.2.2 (page 89), obtained as explained page 141, can be computed as in the
inductive case, from these two partition functions and the above entropy
computation.
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Let us mention finally that, using the same notation as in the inductive
case,

πexp(−λr1)

[
f·(XN+1) = y′

]
=

{∑
t∈T

∏
c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c)− bty(c)

])]

×
∑

c∈{0,1}h
L
[
∆t(c)

]∑y∈Y 1(y = y′) exp
{
−λ
[
bt(c)− bty(c)

]}∑
y∈Y exp

{
−λ
[
bt(x)− bty(c)

]} }

×

{∑
t∈T

L(∆t)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c)− bty(c)

])]}−1

.

To conclude this appendix on classification by thresholding, note that
similar factorized computations are feasible in the important case of classi-
fication trees. This can be achieved using some variant of the context tree
weighting method discovered by Willems et al. (1995) and successfully used
in lossless compression theory. The interested reader can find a description
of this algorithm applied to classification trees in Catoni (2004, page 62).
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