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As a prerequisite, we will recall Chernoff’s deviation bound for sums of
independent random variables and its consequences. We will then proceed
to PAC-Bayes uniform bounds on sums of independent random variables de-
pending on a parameter. These bounds apply to parameter estimators based
on the minimization of an empirical risk function. In the third section, we
will focus on supervised classification, and in the last section more specifically
on Support Vector Machines.

1. Deviations of sums of independent random variables

Let Xi, 1 ≤ i ≤ n be a sample of independent real valued random vari-
ables, and let

M
def
=

1

n

n∑
i=1

Xi

be their empirical mean. We will study the deviations of M with respect to
its mean (under hypotheses ensuring that it exists). When this is meaningful,
we will set

m
def
= E(M) =

1

n

n∑
i=1

E(Xi).

Consider the moment generating functions

ψi(λ) = log
{
E
[
exp(λXi)

]}
,

ψ(λ) =
1

n

n∑
i=1

ψi(λ).
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These are convex functions, taking their values in R ∪ {+∞}, and sending
zero to zero. Let us consider the dual function

ψ∗(x) = sup
λ∈R+

λx− ψ(λ) ∈ R+ ∪ {+∞}.

Proposition 1.1 The deviations of the empirical mean M are such that

P
(
M ≥ x

)
≤ exp

[
−nψ∗(x)

]
.

Proof. Let us remark that no hypothesis is needed, because m is not
involved explicitly in this result and because ψ∗(x) = 0 is possible, in which
case the result is trivial. The proof is based on the fact that for any z ∈ R+,
1(z ≥ 1) ≤ z. Indeed

P
(
M ≥ x

)
= E

{
1
[
exp
(
nλ(M − x)

)
≥ 1
]}

≤ E
[
exp
(
nλ(M − x)

)]
= exp

{
n
[
ψ(λ)− λx

]}
, λ ∈ R+.

Consequently,

P
(
M ≥ x

)
≤ inf

λ∈R+

exp
{
n
[
ψ(λ)− λx

]}
= exp

(
−nψ∗(x)

)
.

�

Proposition 1.2 Let us put Λi = sup
{
λ ∈ R+ : ψi(λ) < +∞

}
and Λ =

min{Λ1, . . . ,Λn

}
. For any λ ∈ [0,Λi[, ψi(λ) < +∞ and the function ψi is of

class C∞ on the interval ]0,Λi[. If, moreover, E
(
|Xi|k

)
<∞, the function ψi

is of class Ck on [0,Λi[.

Proof. Let us put ϕi(λ) = E
[
exp(λXi)

]
. Let us consider some λ ∈

[0,Λi[. By definition of Λi, there is β ∈]λ,Λi[ such that ψi(β) < ∞, and
therefore, ϕi(β) <∞. From Jensen’s inequality,

+∞ > E
[
exp(βXi)

]
= E

{[
exp(λXi)

]β/λ} ≥ {E[exp(λXi)
]}β/λ

,

proving that ϕi(λ) <∞, and therefore that ψi(λ) <∞. Let us remark that

Xj−1
i exp(βXi) = Xj−1

i exp(αXi) +

∫ β

α

Xj
i exp(λXi) dλ,

0 < α < β < Λi, j ≥ 1.
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Moreover
E
{

sup
λ∈[α,β]

∣∣Xj
i exp

(
λXi

)∣∣} <∞
Indeed, let us consider γ ∈]β,Λi[ and

C1 = sup
x∈R+

xj exp
[
−(γ − β)x

]
,

C2 = sup
x∈R+

xj exp(−αx).

∣∣Xj
i exp(λXi)

∣∣ ≤ {C1 exp(γXi), Xi ≥ 0,

C2, Xi ≤ 0.

Consequently,

E
{

sup
λ∈[α,β]

∣∣Xj
i exp(λXi)

∣∣} ≤ C1E
[
exp(γXi)

]
+ C2 <∞.

We can therefore use Fubini’s theorem and write

E
[
Xj−1
i exp(βX)

]
= E

[
Xj−1
i exp(αXi)

]
+ E

(∫ β

α

Xj
i exp(λXi) dλ

)
= E

[
Xj−1
i exp(αXi)

]
+

∫ β

α

E
[
Xj
i exp(λXi)

]
dλ.

From Lebesgue’s dominated convergence theorem, λ 7→ E
(
Xj
i exp(λXi)

]
:

[α, β] → R is continuous, therefore β 7→ E
[
Xj−1
i exp(βXi)

]
is of class C1,

and its derivative is E
[
Xj
i exp(βXj)

]
, therefore β 7→ E

[
exp(βXi)

]
is of class

C∞ on ]0,Λi[ and so is ψi.
Let us now assume moreover that E

[
|Xi|k

]
< ∞. In this case we can in

the same way prove that for any β ∈]0,Λi[,

E
{

sup
λ∈[0,β]

∣∣Xj
i exp(λXi)

∣∣} ≤ C1E
[
exp(γXi)

]
+ E

(
|Xi|j

)
<∞,

Consequently, for any β ∈ [0,Λi[,

E
[
Xj−1
i exp(βXi)

]
= E

(
Xj−1
i

)
+

∫ β

0

E
[
Xj
i exp(λXi)

]
dλ, 1 ≤ j ≤ k,

so that ϕi and ψi are of class Ck on the interval [0,Λi[. �
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Proposition 1.3 Let us assume that E
(
X2
i

)
< ∞ and that Λi > 0. The

second derivative of ψi can be seen as a variance:

ψ′′i (λ) =
E
[
X2
i exp(λXi)

]
E
[
exp(λXi)

] −
(
E
[
Xi exp(λXi)

]
E
[
exp(λXi)

] )2

, 0 ≤ λ < Λi,

moreover

ψi(λ) = λE(Xi) +

∫ λ

0

(λ− α)ψ′′i (α) dα, 0 ≤ λ < Λi.

Proof. According to the previous proposition, ψi is of class C2 on [0,Λi[
and

ψ′i(λ) =
E
[
Xi exp(λXi)

]
E
[
exp(λXi)

] .

Taking one more derivative, we get the expression of ψ′′i given in the propo-
sition. Let us consider the random variable Yi distributed according to the
probability measure

P
(
Yi ∈ A

)
=
E
[
1(Xi ∈ A) exp(λXi)

]
E
[
exp(λXi)

] ,

for any Borel setA. For any measurable function f satisfying E
[
|f(Xi)| exp(λXi)

]
<

∞, it is such that

E
[
f(Yi)

]
=
E
[
f(Xi) exp(λXi)

]
E
[
exp(λXi)

] .

This shows that ψ′′i (λ) = E
(
Y 2
i

)
− E

(
Yi
)2

can indeed be expressed as a
variance. The second part of the proposition is obtained using a Taylor
expansion with integral reminder, namely

ψi(λ) = ψi(0) + λψ′i(0) +

∫ λ

0

(λ− α)ψ′′i (α) dα.

�

Proposition 1.4 Let us assume that Λ > 0 and that E
(
X2
i

)
<∞, 1 ≤ i ≤

n. Let us put

V (λ)
def
=

2

λ2

[
ψ(λ)− λm

]
=

2

λ2

∫ λ

0

(λ− α)ψ′′(α) dα, 0 ≤ λ < Λ
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V (λ)
def
= sup

β∈[0,λ]

V (β),

v
def
= V (0) =

1

n

n∑
i=1

E
{[
Xi − E(Xi)

]2}
let us remark that V is a continuous non decreasing function with values in
R+ ∪{+∞}. Under these hypotheses

P
(
M ≥ m+ x

)
≤ exp

(
− nx2

2V (x/v)

)
,

P

(
M ≥ m+

√
2 log(ε−1)

n
V

(√
2 log(ε−1)

nv

) )
≤ ε.

Proof. For any 0 ≤ β ≤ λ,

ψ∗(m+ x) ≥ βx− β2

2
V (λ),

so that

P
(
M ≥ m+ x

)
≤ exp

[
−n
(
βx− β2

2
V (λ)

)]
.

We get the first part of the inequality, choosing λ = x/v and β = x/V (λ) ≤ λ.

To get the second part, let us put ε = exp

[
−n
(
βx − β2

2
V (λ)

)]
. We get

first that

P

(
M ≥ m+

β

2
V (λ) +

log(ε−1)

nβ

)
≤ ε,

and from there, we conclude, choosing λ =

√
2 log(ε−1)

nv
≥ β =

√
2 log(ε−1)

nV (λ)
.

�

Proposition 1.5 (Bennett’s inequality) Let us assume that E
(
X2
i

)
<

∞ and that Xi ≤ E(Xi) + b, 1 ≤ i ≤ n. Let us introduce the function

h(u) = (1 + u) log(1 + u)− u ≥ u2

2(1 + u/3)
, u ∈ R+.

Under these hypotheses,

P
(
M ≥ m+ x

)
≤ exp

[
−nv
b2
h

(
bx

v

)]
≤ exp

(
− nx2

2v + 2bx
3

)
,

P

(
M ≥ m+

√
2v log(ε−1)

n

(
1− b

3v

√
2v log(ε−1

n

)−1/2
)
≤ ε.
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Proof. Let us remark first that for any λ ∈ R+,

ψ∗(m+ x) ≥ λ(x+m)− 1

n

n∑
i=1

log
[
E
(
exp(λXi)

)]
= λx− 1

n

n∑
i=1

log
{
E
[
exp
(
λ(Xi −mi)

)]}
,

where mi
def
= E(Xi). We can then write

E
[
exp
(
λ(Xi −mi)

)]
− 1 = E

[
exp
(
λ(Xi −mi)

)
− 1− λ(Xi −mi)

]
= E

[
λ2(Xi −mi)

2g
(
λ(Xi −mi)

)]
where g(y) = y−2

(
exp(y) − 1 − y

)
. The function g is non decreasing on R.

Using a Taylor expansion of order two of the function z 7→ exp(yz) between
0 and 1, we see that it can indeed be written as

g(y) =

∫ 1

0

(1− z) exp(yz) dz, y ∈ R.

Consequently

E
[
λ2(Xi −mi)

2g
(
λ(Xi −mi)

)]
≤ E

[
λ2(Xi −mi)

2g(λb)
]
, 1 ≤ i ≤ n.

Therefore,

log
{
E
[
exp
(
λ(Xi −mi)

)]}
≤ λ2g(λb)E

[
(Xi −mi)

2
]
.

Thus,

ψ∗(m+ x) ≥ λx− λ2vg(λb) = λx− v

b2

(
exp(λb)− 1− λb

)
.

Let us choose λ = b−1 log

(
1 +

bx

v

)
, to get

ψ∗(x) ≥ v

b2
h

(
bx

v

)
.

Let us show now that h(u) ≥ u2

2(1 + u/3)
, u > −1. Let us compute the

derivatives of h, h′(u) = log(1+u), h′′(u) = 1/(1+u), and then the derivatives
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of f(u) = (1 + u/3)h(u)− u2/2. We get f ′(u) = h′(u)(1 + u/3) + h(u)/3− u.
Thus f ′(0) = 0 and

f ′′(u) = h′′(u)(1 + u/3) + 2h′(u)/3− 1 =
1 + u/3

1 + u
+

2

3
log(1 + u)− 1

=
2

3
log(1 + u)− 2u

3(1 + u)
=

2h(u)

3(1 + u)
≥ 0, u > −1.

The convex function f , sending zero to zero, with a null first derivative at
zero, is therefore everywhere non negative.

Let us put ε = exp

(
− nx2

2v + 2bx
3

)
. We get

x2 =
2v log(ε−1)

n

(
1 +

bx2

3vx

)
≤ 2v log(ε−1

n

(
1 +

bx2

3v

(
2v log(ε−1)

n

)−1/2
)
.

We deduce that

x2 ≤ 2v log(ε−1)

n

(
1− b

3v

√
2v log(ε−1)

n

)−1

,

proving the second inequality of the proposition. �

Proposition 1.6 (Hoeffding’s inequality) Let us assume that ai ≤
Xi ≤ bi, 1 ≤ i ≤ n. In this case,

P
(
M ≥ m+ x

)
≤ exp

(
− 2n2x2∑n

i=1(bi − ai)2

)
,

P

(
M ≥ m+

√∑n
i=1(bi − ai)2 log(ε−1)

2n2

)
≤ ε.

Proof. The second derivative of ψi is the variance of a random variable
taking its values in the interval [ai, bi]. It cannot therefore be larger than

(bi − ai)
2/4. Consequently, ψ(λ) ≤ λm +

λ2

8

n∑
i=1

(bi − ai)
2, and therefore

ψ∗(m+ x) ≥ 2nx2∑n
i=1(bi − ai)2

. �
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2. PAC-Bayes bounds on the uniform deviations of empirical
means with respect to their expectations

Let us consider n independent random variables Xi, 1 ≤ i ≤ n taking
their values in a measurable space X. Let us also consider a measurable
parameter space Θ and a measurable function f : X×Θ→ R (which can be
seen as a family of functions from X to R depending on the parameter θ).
Let us assume that

E
[
f(Xi, θ)

2
]
< +∞, θ ∈ Θ, 1 ≤ i ≤ n,

and let us put

M(θ) =
1

n

n∑
i=1

f(Xi, θ),

m(θ) =
1

n

n∑
i=1

E
[
f(Xi, θ)

]
,

ψi(λ, θ) = log
{
E exp

[
λf(Xi, θ)

]}
,

ψ(λ, θ) =
1

n

n∑
i=1

ψi(λ, θ),

Λ = sup
{
λ : ψ(λ, θ) <∞, θ ∈ Θ

}
Proposition 2.1 Let us assume that Λ > 0. Let ν ∈M1

+(Θ) be a reference
measure on the parameter space Θ. For any λ ∈ [0,Λ[,

E

[
exp

(
sup

{∫
Θ

n
[
λM(θ)− ψ(λ, θ)

]
dρ(θ)−K(ρ, ν),

ρ ∈M1
+(Θ), θ 7→ λM(θ)− ψ(λ, θ) ∈ L1(ρ),K(ρ, ν) <∞

})]
≤ 1.

Consequently, with probability at least 1− ε, for any probability measure ρ ∈
M1

+(Θ), such that θ 7→ λM(θ)− ψ(λ, θ) ∈ L1(ρ) and K(ρ, ν) <∞,∫
M(θ) dρ(θ) ≤ 1

λ

∫
ψ(λ, θ) dρ(θ) +

K(ρ, ν) + log(ε−1)

nλ
.

Proof. From Jensen’s inequality, whenever ρ satisfies the hypotheses,
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exp

[∫
Θ

n
[
λM(θ)− ψ(λ, θ)

]
dρ(θ)−K(ρ, ν)

]
≤
∫

Θ

exp
{
n
[
λM(θ)− ψ(λ, θ)

]}
1

(
dρ

dν
(θ) > 0

)(
dρ

dν
(θ)

)−1

dρ(θ)

=

∫
Θ

exp
{
n
[
λM(θ)− ψ(λ, θ)

]}
1

(
dρ

dν
(θ) > 0

)
dν(θ)

≤
∫

Θ

exp
{
n
[
λM(θ)− ψ(λ, θ)

]}
dν(θ).

We can then apply Fubini’s theorem for non negative functions.

E

{
exp

[
sup

ρ∈M1
+(Θ)

∫
Θ

n
[
λM(θ)− ψ(λ, θ)

]
dρ(θ)−K(ρ, ν)

]}
≤ E

[∫
Θ

exp
{
n
[
λM(θ)− ψ(λ, θ)

]}
dν(θ)

]
=

∫
Θ

E

[
exp
{
n
[
λM(θ)− ψ(λ, θ)

]}]
dν(θ) = 1.

The expectation used in the proposition is taken on a function that may not
be measurable, but that is upper bounded by a measurable function with
an expectation not greater than one, this is what the proof shows and this
is also how the proposition should be understood. The second part of the
proposition is a consequence of Markov’s inequality. Here again, the involved
event may not be a measurable set, it should be understood that it contains
a measurable set of probability at least equal to 1− ε. �

Let us put mi(θ) = E
[
f(Xi, θ)

]
,

v(θ) =
1

n

n∑
i=1

E
{[
f(Xi, θ)−mi(θ)

]2}
,

V (λ, θ) =
2

λ2

[
ψ(λ, θ)− λm(θ)

]
,

V (λ, θ) = sup
β∈[0,λ]

V (β, θ)

and let us assume that v
def
= sup

θ∈Θ
v(θ) < ∞ and V (λ)

def
= sup

θ∈Θ
V (λ, θ) < ∞,

0 ≤ λ < Λ′.

Proposition 2.2 Under the previous hypotheses, for any positive constant
c,
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E

(
sup

{∫
Θ

[
M(θ)−m(θ)

]
dρ(θ);

ρ ∈M1
+(Θ), θ 7→M(θ)−m(θ) ∈ L1(ρ),K(ρ, ν) ≤ c

})

≤ inf
λ∈[0,Λ′[

λV (λ)

2
+

c

λn
≤

√
2c

n
V

(√
2c

nv

)
.

In particular, when Θ is a finite set, taking c = log(|Θ|), ρ = δθ and ν(θ) =
|Θ|−1, θ ∈ Θ, we get

E
{

sup
θ∈Θ

[
M(θ)−m(θ)

]}
≤

√√√√2 log
(
|Θ|
)

n
V

(√
2 log

(
|Θ|
)

nv

)
.

Proof. From the proof of the previous proposition, the argument of the
expectation to be bounded is not greater than

1

nλ
log

{∫
exp
[
n
[
λM(θ)− ψ(λ, θ)

]]
dν(θ)

}
+
λV (λ)

2
+

c

λn
,

and we conclude with the help of Jensen’s inequality. We get in this way the

first upper bound inf
λ∈[0,Λ′[

λV (λ)

2
+
c

λn
that we can weaken to get inf

0≤λ≤β

λV (β)

2
+

c

λn
. To get the second upper bound, we should choose β =

√
2c

nv
and

λ =

√
2c

nV (β)
≤ β. �

Proposition 2.3 Under the previous hypotheses, for any positive constant
c, with probability at least 1− ε,

sup

{∫
Θ

[
M(θ)−m(θ)

]
dρ(θ);

ρ ∈M1
+(Θ), θ 7→M(θ)−m(θ) ∈ L1(Θ),K(ρ, ν) ≤ c

}

≤ inf
λ∈[0,Λ′[

λV (λ)

2
+
c+ log(ε−1)

λn
≤

√√√√2
[
c+ log(ε−1)

]
n

V

(√
2
[
c+ log(ε−1)

]
nv

)
.
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In particular, when Θ is a finite set, with probability at least 1− ε

sup
θ∈Θ

[
M(θ)−m(θ)

]
≤

√√√√2 log
(
|Θ|/ε

)
n

V

(√
2 log

(
|Θ|/ε

)
nv

)
.

Proof. This is a direct consequence of the second part of Proposition

2.1 (page 8) and of the inequality ψ(λ, θ) ≤ λ2V (λ)

2
+ λm(θ). �

Proposition 2.4 Let us assume that Θ = Bd =
{
θ ∈ Rd; ‖θ‖ ≤ 1

}
and

that there exist two positive constants B and g such that

sup
x∈X

f(x, θ)− inf
x∈X

f(x, θ) ≤ B, θ ∈ Bd,

|f(x, θ)− f(x, θ′)| ≤ g‖θ − θ′‖, x ∈ X, θ, θ′ ∈ Bd.

Let us consider the value of the parameter where the empirical risk takes its
minimum value

θ̂ ∈ arg min
θ∈Bd

M(θ).

With probability at least 1− ε,

m(θ̂) ≤ inf
θ∈Bd

m(θ) +B


√

d

2n
log

(
1 +

4g

B

√
2n

d

)
+

log
(
2/ε
)

2n

+

√
d

8n
+

√
log
(
2/ε
)

2n

 .

Under those simple hypotheses, we see that the quality of the estimation
of inf

θ∈Θ
m(θ) by θ̂ depends on the dimension d of the parameter space, and

more precisely of the ratio d/n between this dimension and the sample size.
Proof. Let us start by extending the domain of f to Rd, putting

f(x, θ) = f(x, θ/‖θ‖), θ ∈ Rd \Bd.

Let δ > 0 be a positive real parameter to be set later and ν the uniform
measure on the ball (1 + δ)Bd of radius 1 + δ. Let us consider, for all θ ∈ Bd,
the uniform probability measure ρθ on the ball θ + δBd centered at θ and of
radius δ. As the volume of a ball in Rd is proportional to its radius raised to
the power d, we see that

K(ρθ, ν) = d log

(
1 + δ

δ

)
, θ ∈ Bd.
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From the previous proposition and Hoeffding’s inequality, with probabil-
ity at least 1− ε, for any θ ∈ Bd,∫

m(θ′) dρθ(θ
′) ≤

∫
M(θ′) dρθ(θ

′) +B

√
d log

(
1 + δ−1

)
+ log

(
ε−1
)

2n
.

We deduce, still with probability at least 1− ε, that

m(θ̂) ≤M(θ̂) + 2gδ +B

√
d log

(
1 + δ−1

)
+ log

(
ε−1
)

2n
.

Let θ∗ ∈ Bd, such that m(θ∗) = inf
θ∈Bd

m(θ) (it exists, since θ 7→ m(θ) is

continuous on the compact set Bd). With probability at least 1− ε

M(θ∗) ≤ m(θ∗) +B

√
log
(
ε−1
)

2n
.

According to the definition of the estimator θ̂, M(θ̂) ≤M(θ∗). Consequently,
with probability at least 1− 2ε,

m(θ̂) ≤ m(θ∗) +B

{√
d log(1 + δ−1) + log

(
ε−1
)

2n
+

√
log(ε−1)

2n

}
+ 2gδ.

To conclude, it is enough to choose δ =
B

4g

√
d

2n
and to replace ε with ε/2.

�

Proposition 2.5 Let us assume that Θ = Rd, and that for some measurable
function (x, θ) 7→ ∇f(x, θ) ∈ Rd and some positive constants g and H,

|f(x, θ)− f(x, θ′)| ≤ g‖θ − θ′‖,

|f(x, θ′)− f(x, θ)− 〈∇f(x, θ), θ′ − θ〉| ≤ H

2
‖θ′ − θ‖2, x ∈ X, θ, θ′ ∈ Rd.

Let θ∗ ∈ arg min
θ∈Bd

m(θ). Let us consider, for any h > 0, the function

χ(h) = sup
θ∈Bd

h

2
‖θ − θ∗‖2 −m(θ) +m(θ∗),

Under these hypotheses, the empirical minimizer, θ̂ ∈ arg min
θ∈Bd

M(θ) of m on

the unit ball is such that with probability at least 1− ε

‖θ̂ − θ∗‖2 ≤ 8g2

nh2

[(
8H

h
+ 1

)
d+ 2 log

(
ε−1
)]

+
4χ(h)

h
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and m(θ̂)−m(θ∗) ≤
4g2

nh

[(
8H

h
+ 1

)
d+ 2 log

(
ε−1
)]

+ χ(h).

In the case when there is h > 0 such that χ(h) = 0, we thus get a convergence
speed of order d/n instead of

√
d/n, under stronger hypotheses than in the

previous proposition.

Exercice 1 In the case when m(θ) − m(θ∗) ≥ c ‖θ − θ∗‖α, θ ∈ Bd, where
c > 0 and α > 2 what speed do we get?

Proof. Let us choose ρθ = N(θ, β−1I) and ν = ρθ∗ . Let us remark that

K(ρθ, ν) =
β

2
‖θ − θ∗‖2. We are going to apply Proposition 2.1 (page 8) to

the function (x, θ) 7→ f(x, θ∗)− f(x, θ). From Hoeffding’s inequality,

logE exp
{
λ
[
f(X, θ∗)− f(X, θ)

]}
− λ
[
m(θ∗)−m(θ)

]
≤ λ2g2‖θ − θ∗‖2

2

Consequently, with probability at least 1− ε, for any θ ∈ Bd,∫
m(θ′) dρθ(θ

′)−m(θ∗) ≤
∫
M(θ′) dρθ(θ

′)−M(θ∗)

+
λg2

2

∫
‖θ′ − θ∗‖2 dρθ(θ

′) +
β‖θ − θ∗‖2

2nλ
+

log(ε−1)

nλ
.

Moreover,∫
m(θ′) dρθ(θ

′) = m(θ)

+ E

[∫ [
f(X, θ′)− f(X, θ)− 〈∇f(X, θ), θ′ − θ〉

]
dρθ(θ

′)

≥ m(θ)− H

2

∫
‖θ′ − θ‖2 dρθ(θ

′) = m(θ)− Hd

2β
.

In the same way,

∫
M(θ′) dρθ(θ

′) ≤ M(θ) +
Hd

2β
. We deduce that with

probability at least 1− ε, for any θ ∈ Bd,

m(θ)−m(θ∗) ≤M(θ)−M(θ∗) +
Hd

β
+
λg2d

2β
+
λg2

2
‖θ − θ∗‖2

+
β‖θ − θ∗‖2

2nλ
+

log
(
ε−1
)

nλ
.
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We can then use the fact that m(θ) −m(θ∗) ≥
h

2
‖θ − θ∗‖2 − χ(h) and that

by construction M(θ̂) ≤ M(θ∗). We conclude that with probability at least
1− ε

h

2
‖θ̂ − θ∗‖2 ≤ χ(h) +

d

β

(
H +

λg2

2

)
+

(
λg2

2
+

β

2nλ

)
‖θ̂ − θ∗‖2 +

log
(
ε−1
)

nλ
.

Thus

‖θ̂ − θ∗‖2

(
1− λg2

h
− β

nλh

)
≤ 2χ(h)

h
+

2d

βh

(
H +

λg2

2

)
+

2 log
(
ε−1
)

hnλ
.

Let us then choose λ =
h

4g2
and β =

nλh

4
=

nh2

16g2
. We get

1

2
‖θ̂ − θ∗‖2 ≤ 2χ(h)

h
+

32g2d

nh3

(
H +

h

8

)
+

8g2 log
(
ε−1
)

nh2
.

This gives the first upper bound of the proposition.
To prove the second upper bound, let us use the fact that ‖θ̂ − θ∗‖2 ≤

2

h

[
m(θ̂ )−m(θ∗) + χ(h)

]
, to obtain

m(θ̂ )−m(θ∗) ≤
d

β

(
H +

λg2

2

)
+

(
λg2

2
+

β

2nλ

)
2

h

[
m(θ̂ )−m(θ∗) + χ(h)

]
+

log
(
ε−1
)

nλ
.

We conclude in the same way, replacing λ and β by their values. �

3. PAC-Bayes bounds for supervised classification

In this section, we are given some i.i.d. sample (Wi)
n
i=1 ∈Wn, where W is

a measurable space, and some binary measurable loss function L : W×Θ→
{0, 1}, where Θ is a measurable parameter space. Our aim is to minimize
with respect to θ ∈ Θ the expected loss∫

L(w, θ) dP(w),
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3.1 Deviation bounds for sums of Bernoulli random variables 15

where P is the marginal distribution of the observed sample (Wi)
n
i=1. More

precisely, assuming that P is unknown, we would like to find an estimator

θ̂(W1:n) depending on the observed sample W1:n
def
= (Wi)

n
i=1 such that the

excess risk ∫
L(w, θ̂) dP(w)− inf

θ∈Θ

∫
L(w, θ) dP(w)

is small. The previous quantity is random, since θ̂ depends on the random
sample W1:n. Therefore its size can be understood in different ways. Here
we will focus on the deviations of the excess risk. Accordingly, we will look
for estimators providing a small risk with a probability close to one.

A typical example of such a problem is provided by supervised classifi-
cation. In this setting W = X × Y, where Y is a finite set, Wi = (Xi, Yi),
where (Xi, Yi) are input-output pairs, a family of measurable classification
rules

{
fθ : X → Y; θ ∈ Θ

}
is considered and the loss function L(w, θ) is

defined as the classification error

L
[
(x, y), θ

]
= 1

[
fθ(x) 6= y

]
.

Accordingly the aim is to minimize the expected classification error

PX,Y
[
fθ(X) 6= Y

]
in view of a sample (Xi, Yi)

n
i=1 of observations.

The point of view exposed here is a synthesis of the approaches of [9] and
[2].

3.1. Deviation bounds for sums of Bernoulli random variables.
Given some parameter λ ∈ R, let us consider the (normalized) log-Laplace
transform of the Bernoulli distribution :

Φλ(p)
def
= −1

λ
log
[
1− p+ p exp(−λ)

]
.

Let us also consider the Kullback-Leibler divergence of two Bernoulli distri-
butions

K(q, p)
def
= q log

(
q

p

)
+ (1− q) log

(
1− q
1− p

)
.

In the sequel P will be the empirical measure

P =
1

n

n∑
i=1

δWi
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3.1 Deviation bounds for sums of Bernoulli random variables 16

of an i.i.d. sample (Wi)
n
i=1 drawn from P⊗n ∈M1

+(Wn) (the set of probability
measures on Wn). We will use a short notation for integrals, putting for any
ρ, π ∈M1

+(Θ) and any integrable function f ∈ L1

(
W×Θ2,P⊗ π ⊗ ρ

)
f(P, ρ, π) =

∫
f(w, θ, θ′) dP(w) dρ(θ) dπ(θ′),

so that for instance L(P, ρ) =

∫
L(w, θ) dP(w)dρ(θ).

Let us recall first Chernoff’s bound.

Proposition 3.1 For any fixed value of the parameter θ ∈ Θ, the identity∫
exp
[
−nλL(P, θ)

]
dP⊗n = exp

{
−nλΦλ

[
L(P, θ)

]}
shows that with probability at least 1− ε,

L(P, θ) ≤ B+

[
L(P, θ), log(ε−1)/n

]
,

where B+(q, δ) = inf
λ∈R+

Φ−1
λ

(
q +

δ

λ

)
= sup

{
p ∈ [0, 1] : K(q, p) ≤ δ

}
, q ∈ [0, 1], δ ∈ R+.

Moreover
−δq ≤ B+(q, δ)− q −

√
2δq(1− q) ≤ 2δ(1− q).

In the same way, the identity∫
exp
[
nλL(P, θ)

]
dP⊗n = exp

{
nλΦ−λ

[
L(P, θ)

]}
shows that with probability at least 1− ε

L(P, θ) ≤ B−
[
L(P, θ), log(ε−1)/n

]
,

where B−(q, δ) = inf
λ∈R+

Φ−λ(q) +
δ

λ

= sup
{
p ∈ [0, 1] : K(p, q) ≤ δ

}
, q ∈ [0, 1], δ ∈ R+,

and
−δq ≤ B−(q, δ)− q −

√
2δq(1− q) ≤ 2δ(1− q).

Before proving this proposition, let us mention some important identity.
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3.1 Deviation bounds for sums of Bernoulli random variables 17

Proposition 3.2 For any probability measures π and ρ defined on the same
measurable space, such that K(ρ, π) <∞, and any bounded measurable func-
tion h, let us define the transformed probability measure πexp(h) � π by its
density

dπexp(h)

dπ
=

exp(h)

Z
,

where Z =
∫

exp(h) dπ. Let us moreover introduce the notation

Var
(
h dπ

)
=
∫ (
h−

∫
h dπ

)2
dπ.

The expectations with respect to ρ and π of h and the log-Laplace transform
of h are linked by the identities∫

h dρ−K(ρ, π) + K(ρ, πexp(h)) = log
[∫

exp(h) dπ
]

(1)

=
∫
h dπ +

∫ 1

0
(1− α)Var

[
h dπexp(αh)

]
dα. (2)

Proof. The first identity is a straightforward consequence of the definitions
of πexp(h) and of the Kullback-Leibler divergence function. The second one is
the Taylor expansion of order one with integral remainder of the function

f(α) = log
[∫

exp(αh) dπ
]
,

which says that f(1) = f(0) + f ′(0) +
∫ 1

0
(1− α)f ′′(α) dα. �

Exercise 1 Prove that f ∈ C∞. Hint : write

hk exp(αh) = hk +

∫ α

0

hk+1 exp(γh) dγ,

use Fubini’s theorem to show that α 7→
∫
hk exp(αh) dπ belongs to C1 and

compute its derivative.

Let us come now to the proof of Proposition 3.1 (page 16). Chernoff’s
inequality reads

Φλ

[
L(P, θ)

]
− log(ε−1)

nλ
≤ L(P, θ),

where the inequality holds with probability at least 1− ε. Since the left-hand
side is non-random, it can be optimized in λ, giving

L(P, θ) ≤ B+

[
L(P, θ), log(ε−1)/n

]
.
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3.1 Deviation bounds for sums of Bernoulli random variables 18

Exercise 2 Prove this statement in more details. For any integer k > 1,
consider the event

Ak =
{

sup
λ∈R+

F (λ)− k−1 > L(P, θ)
}
,

where F (λ) = Φλ

[
L(P, θ)

]
− log(ε−1)

nλ
. Show that P⊗n(Ak) ≤ ε by choos-

ing some suitable value of λ. Remark that Ak ⊂ Ak+1 and conclude that
P⊗n

(
∪kAk

)
≤ ε.

Since

lim
λ→+∞

Φ−1
λ

(
q +

δ

λ

)
= lim

λ→+∞

1− exp(−λq − δ)
1− exp(−λ)

≤ 1,

B+(q, δ) ≤ 1.
Applying equation (1, page 17) to Bernoulli distributions gives

λΦλ(p) = λq +K(q, p)−K(q, pλ)

where
pλ =

p

p+ (1− p) exp(λ)
.

This shows that

B+(q, δ) = sup
{
p ∈ [0, 1] : Φλ(p) ≤ q +

δ

λ
, λ ∈ R+

}
= sup

{
p ∈ [q, 1[ : K(q, p) ≤ δ +K(q, pλ), λ ∈ R+

}
= sup

{
p ∈ [q, 1[ : K(q, p) ≤ δ

}
= sup

{
p ∈ [0, 1] : K(q, p) ≤ δ

}
,

because when q ≤ p < 1 then λ = log

(
q−1 − 1

p−1 − 1

)
∈ R+, q = pλ and therefore

K(q, pλ) = 0.

Let us remark now that
∂2

∂x2
K(x, p) = x−1(1−x)−1. Thus if p ≥ q ≥ 1/2,

then

K(q, p) ≥ (p− q)2

2q(1− q)
,

so that if K(q, p) ≤ δ, then

p ≤ q +
√

2δq(1− q).
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3.2 PAC-Bayes bounds 19

Now if q ≤ 1/2 and p ≥ q then

K(q, p) ≥


(p− q)2

2p(1− p)
, p ≤ 1/2

2(p− q)2, p ≥ 1/2

 ≥ (p− q)2

2p(1− q)
,

so that if K(q, p) ≤ δ, then

(p− q)2 ≤ 2δp(1− q),

implying that

p− q ≤ δ(1− q) +
√

2δq(1− q) + δ2(1− q)2 ≤
√

2δq(1− q) + 2δ(1− q).

On the other hand,

K(q, p) ≤ (p− q)2

2 min{q(1− q), p(1− p)}
≤ (p− q)2

2q(1− p)
,

thus when K(q, p) = δ with p > q, then

(p− q)2 ≥ 2δq(1− p),

implying that

p− q ≥ −δq +
√

2δq(1− q) + δ2q2 ≥
√

2δq(1− q)− δq.

Exercise 3 The second part of Proposition 3.1 (page 16) is proved in the
same way and left as an exercise.

3.2. PAC-Bayes bounds. We are now going to make Proposition 3.1 uni-
form with respect to θ. The PAC-Bayes approach to this [6, 7, 8, 4] is to
randomize θ, so we will consider now joint distributions on (W1:n, θ), where
the distribution of W1:n is still P⊗n and the conditional distribution of θ given
the sample is given by some transition probability kernel ρ : Wn →M1

+(Θ),
called in this context a posterior distribution∗. This posterior distribution
ρ will be compared with a prior (meaning non-random) probability measure
π ∈M1

+(Θ).

∗We will assume that ρ is a regular conditional probability kernel, meaning that for any
measurable set A the map (w1, . . . , wn) 7→ ρ(w1, . . . , wn)(A) is assumed to be measurable.
We will also assume that the σ-algebra we consider on Θ is generated by a countable family
of subsets. See [1][page 50] for more details
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3.2 PAC-Bayes bounds 20

Proposition 3.3 Let us introduce the notation

BΛ(q, δ) = inf
λ∈Λ

Φ−1
λ

(
q +

δ

λ

)
.

For any prior probability measure π ∈M1
+(Θ) and any λ ∈ R+,∫

exp

[
sup

ρ∈M1
+(Θ)

nλ
{

Φλ

[
L(P, ρ)

]
− L(P, ρ)

}
−K(ρ, π)

]
dP⊗n ≤ 1, (3)

and therefore for any finite set Λ ⊂ R+, with probability at least 1 − ε, for
any ρ ∈M1

+(Θ),

L(P, ρ) ≤ BΛ

(
L(P, ρ),

K(ρ, π) + log
(
|Λ|/ε

)
n

)
,

Proof. The exponential moment inequality (3) is a consequence of equation
(1, page 17), showing that

exp

{
sup

ρ∈M1
+(Θ)

nλ

∫ {
Φλ

[
L(P, θ)

]
− L(P, θ)

}
dρ(θ)−K(ρ, π)

}

≤
∫

exp

[
nλ
{

Φλ

[
L(P, θ)

]
− L(P, θ)

}]
dπ(θ),

and of the fact that Φλ is convex, showing that

Φλ

[
L(P, ρ)

]
≤
∫

Φλ

[
L(P, θ)

]
dρ(θ).

The deviation inequality follows as usual. �
We cannot take the infimum on λ ∈ R+ as in Proposition 3.1 (page 16),

because we can no more cast our deviation inequality in such a way that λ
appears on some non-random side of the inequality. Nevertheless, we can get
a more explicit bound from some specific choice of the set Λ.

Proposition 3.4 Let us define the least increasing upper bound of the vari-
ance of a Bernoulli distribution of parameter p ∈ [0, 1] as

v(p) =

{
p(1− p), p ≤ 1/2,

1/4, otherwise.

Let us choose some positive integer parameter m and let us put

t =
1

4
log

(
n

8 log
[
(m+ 1)/ε

]).
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With probability at least 1− ε, for any ρ ∈M1
+(Θ),

L(P, ρ) ≤ L(P, ρ) +Bm

[
L(P, ρ),K(ρ, π), ε

]
,

where

Bm

(
q, e, ε

)
= max

{√
2v(q)

{
e+ log

[
(m+ 1)/ε

]}
n

cosh
(
t/m

)
+

2(1− q)
{
e+ log

[
(m+ 1)/ε

]}
n

cosh(t/m)2,

2
{
e+ log

[
(m+ 1)/ε

]}
n

}

≤

√
2v(q)

{
e+ log

[
(m+ 1)/ε

]}
n

cosh
(
t/m

)
+

2
{
e+ log

[
(m+ 1)/ε

]}
n

cosh(t/m)2.

Moreover, as soon as n ≥ 5,

Bblog(n)2c−1(q, e, ε) ≤ B(q, e, ε)
def
=√

2v(q)
{
e+ log

[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]
+

2
{
e+ log

[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]2
, (4)

so that with probability at least 1− ε, for any ρ ∈M1
+(Θ),

L(P, ρ) ≤ L(P, ρ)

+

√√√√2v
[
L(P, ρ)

]{
K(ρ, π) + log

[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]
+

2
{
K(ρ, π) + log

[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]2
.

Proof. Let us put

q = L(P, ρ),
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δ =
K(ρ, π) + log

[
(m+ 1)/ε

]
n

,

λmin =

√
8 log

[
(m+ 1)/ε

]
n

,

Λ =
{
λ

1−k/m
min , k = 0, . . . ,m

}
,

p = BΛ(q, δ) = inf
λ∈Λ

Φ−1
λ

(
q +

δ

λ

)
,

λ̂ =

√
2δ

v(p)
.

According to equation (2, page 17) applied to Bernoulli distributions, for any
λ ∈ Λ,

Φλ(p) = p− 1

λ

∫ λ

0

(λ− α)pα(1− pα) dα ≤ q +
δ

λ
.

As moreover pα ≤ p,

p− q ≤ inf
λ∈Λ

λv(p)

2
+
δ

λ
= inf

λ∈Λ

√
2δv(p) cosh

[
log

(
λ̂

λ

)]
.

As v(p) ≤ 1/4 and δ ≥
log
[
(m+ 1)/ε

]
n

,

√
2δ

v(p)
= λ̂ ≥ λmin =

√
8 log

[
(m+ 1)/ε

]
n

.

Therefore either λmin ≤ λ̂ ≤ 1, or λ̂ > 1. Let us consider these two cases
separately.

If λmin = min Λ ≤ λ̂ ≤ max Λ = 1, then log
(
λ̂
)

is at distance at most t/m
from some log

(
λ
)

where λ ∈ Λ, because log(Λ) is a grid with constant steps
of size 2t/m. Thus

p− q ≤
√

2δv(p) cosh
(
t/m

)
.

If moreover q ≤ 1/2, then v(p) ≤ p(1 − q), so that we obtain a quadratic
inequality in p, whose solution is less than

p ≤ q +
√

2δq(1− q) cosh
(
t/m

)
+ 2δ(1− q) cosh

(
t/m

)2
.

If on the contrary q ≥ 1/2, then v(p) = v(q) = 1/4 and

p ≤ q +
√

2δv(q) cosh
(
t/m

)
,
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so that in both cases

p− q ≤
√

2δv(q) cosh(t/m) + 2δ(1− q) cosh
(
t/m

)2
. (5)

Let us consider now the case when λ̂ > 1. In this case v(p) < 2δ, so that

p− q ≤ v(p)

2
+ δ ≤ 2δ.

In conclusion, applying Proposition 3.3 (page 20) we see that with prob-
ability at least 1− ε, for any posterior distribution ρ,

L(P, ρ) ≤ p ≤ q + max
{

2δ,
√

2δv(q) cosh
(
t/m

)
+ 2δ(1− q) cosh

(
t/m

)2
}
,

which is precisely the statement to be proved.
In the special case when m = blog(n)2c − 1 ≥ log(n)2 − 2,

t

m
≤ 1

4
[
log(n)2 − 2

] log

(
n

8 log
[
log(n)2 − 1

]) ≤ log(n)−1

as soon as the last inequality holds, that is as soon as n ≥ exp(
√

2) ' 4.11
to make log(n)2 − 2 positive and

3 log(n)2 − 8 + log(n) log
{

8 log
[
log(n)2 − 1

]}
≥ 0,

which holds true for any n ≥ 5, as can be checked numerically. �

4. Linear classification and support vector machines

We are going in this section to consider more specifically the case of linear
binary classification. In this setting W = X×Y = Rd×{−1,+1}, w = (x, y),
where x ∈ Rd and y ∈ {−1,+1}, Θ = Rd, and

L(w, θ) = 1
[
〈θ, x〉y ≤ 0

]
.

We are going to follow in this section the approach presented in [5] and
[8].

Although we will stick in this presentation to the case when X is a vector
space of finite dimension, the results also apply to support vector machines
[11, 10, 12], where the pattern space is some arbitrary space mapped to
a Hilbert space H by some implicit mapping Ψ : X → H, Θ = H and
L(w, θ) = 1

(
〈θ,Ψ(x)〉y ≤ 0

)
. It turns out that classification algorithms do
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not need to manipulate H itself, but only to compute scalar products of
the form k(x1, x2) = 〈Ψ(x1),Ψ(x2)〉, defining a symmetric positive kernel
k on the original pattern space X. The converse is also true, any positive
symmetric kernel k can be represented as a scalar product in some mapped
Hilbert space (this is the Moore-Aronszajn theorem). Often used kernels on
Rd are

k(x1, x2) =
(
1 + 〈x1, x2〉

)s
, for which dimH <∞,

k(x1, x2) = exp
(
−‖x1 − x2‖2

)
, for which dimH = +∞.

In the following, we will work in Rd, which covers only the case when
dimH <∞, but extensions would be possible.

Let us consider, after [5, 8] as prior probability measure π the centered
Gaussian measure with covariance β−1 Id, so that

dπ

dθ
(θ) =

(
β

2π

)d/2
exp

(
−β‖θ‖

2

2

)
.

Let us also consider the function

ϕ(x) =
1√
2π

∫ +∞

x

exp
(
−t2/2

)
dt, x ∈ R

≤ min
{ 1

x
√

2π
,
1

2

}
exp

(
−x

2

2

)
, x ∈ R+.

Let πθ be the measure π shifted by θ, defined by the identity∫
h(θ′) dπθ(θ

′) =

∫
h(θ + θ′) dπ(θ′).

In this case

K(πθ, π) =
β

2
‖θ‖2,

and
L(w, πθ) = ϕ

[√
βy‖x‖−1〈θ, x〉

]
.

Thus the randomized loss function has an explicit expression : randomization
replaces the indicator function of the negative real line by a smooth approx-
imation. As we are eventually interested in L(w, θ), we will shift things a
little bit, considering along with the classification error function L some error
with margin

M(w, θ) = 1
[
y‖x‖−1〈θ, x〉 ≤ 1

]
.

Unlike L(w, θ) which is independent of the norm of θ, the margin error
M(w, θ) depends on ‖θ‖, counting a classification error each time x is at
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distance less than ‖x‖/‖θ‖ from the boundary {x′ : 〈θ, x′〉 = 0}, so that
the error with margin region is the complement of the open cone

{
x ∈

Rd ; y〈θ, x〉 > ‖x‖
}

.
Let us compute the randomized margin error

M(w, πθ) = ϕ
{√

β
[
y‖x‖−1〈θ, x〉 − 1

]}
.

It satisfies the inequality

M(w, πθ) ≥ ϕ(−
√
β
)
L(w, θ) =

[
1− ϕ

(√
β
)]
L(w, θ). (6)

Applying previous results we obtain

Proposition 4.1 With probability at least 1− ε, for any θ ∈ Rd,

L(P, θ) ≤
[
1− ϕ(

√
β)
]−1

M(P, πθ) ≤ C1(θ),

where

C1(θ) =
[
1− ϕ

(√
β
)]−1

B

(
M(P, πθ),

β‖θ‖2

2
, ε

)
,

the bound B being defined by equation (4, page 21).

We can now minimize this empirical upper-bound to define an estimator.
Let us consider some estimator θ̂ such that

C1(θ̂) ≤ inf
θ∈Rd

C1(θ) + ζ.

Then for any fixed parameter θ?, C1(θ̂) ≤ C1(θ?) + ζ. On the other hand,
with probability at least 1− ε

M(P, πθ?) ≤ B−

(
M(P, πθ?),

log(ε−1)

n

)
.

Indeed∫
exp
{
nλ
[
M(P, πθ?)− Φ−λ

[
M(P, πθ?)

]}
dP⊗n

≤
∫

exp

{
nλ

∫ {
M(P, θ)− Φ−λ

[
M(P, θ)

}
dπθ?(θ)

}
dP⊗n ≤ 1,

because p 7→ −Φ−λ(p) is convex. As a consequence
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Proposition 4.2 With probability at least 1− 2ε,

L(P, θ̂) ≤

inf
θ?∈Θ

[
1− ϕ

(√
β
)]−1

B

(
B−

(
M(P, πθ?),

log(ε−1)

n

)
,
β‖θ?‖2

2
, ε

)
+ ζ.

It is also possible to state a result in terms of empirical margins. Indeed

M(w, πθ) ≤M(w, θ/2) + ϕ(
√
β).

Thus with probability at least 1− ε, for any θ ∈ Rd,

L(P, θ) ≤ C2(θ),

where

C2(θ) =
[
1− ϕ

(√
β
)]−1

B

(
M(P, θ/2) + ϕ

(√
β
)
,
β‖θ‖2

2
, ε

)
.

However, C1 and C2 are non-convex criterions, and faster minimization algo-
rithms are available for the usual SVM loss function, for which we are going
to derive some generalization bounds now. Indeed, let us choose some posi-
tive radius R and let us put ‖x‖R = max

{
R, ‖x‖

}
, so that in the case when

‖x‖ ≤ R, ‖x‖R = R.

M(w, πθ) = ϕ
[√

β
(
y‖x‖−1〈θ, x〉− 1

)]
≤
(
2− y‖x‖−1

R 〈θ, x〉
)

+
+ϕ(

√
β). (7)

To check that this is true, consider the functions

f(z) = ϕ
[√

β
(
‖x‖−1z − 1

)]
,

g(z) =
(
2− ‖x‖−1

R z
)

+
+ ϕ(

√
β), z ∈ R.

Let us remark that they are both non increasing, that f is convex on the
interval z ∈

(
‖x‖,∞

(
(because ϕ is convex on R+), and that sup f = supϕ =

1. Since ‖x‖R ≥ ‖x‖, for any z ∈] −∞, ‖x‖], g(z) ≥ 1 ≥ f(z). Moreover,
g(2‖x‖R) = ϕ(

√
β) ≥ ϕ

[√
β
(
2‖x‖−1‖x‖R− 1

)]
= f(z). Since on the interval(

‖x‖, 2‖x‖R
)
, the function g is linear, the function f is convex and g is not

smaller than f at the two ends, this proves that g is not smaller than f on
the whole interval. Finally, on the interval z ∈

(
2‖x‖R,+∞

(
, the function g

is constant and the function f is decreasing, so that on this interval also g is
not smaller than f , and this ends the proof of (7), since the three intervals
on which g ≥ f cover the whole real line.

Using the upper bounds (7) and (6, page 25), and Proposition 3.3 (page
20), we obtain
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Proposition 4.3 With probability at least 1− ε, for any θ ∈ Rd,

L(P, θ) ≤
[
1− ϕ

(√
β
)]−1

BΛ

(∫ (
2− y‖x‖−1

R 〈θ, x〉
)

+
dP(x, y) + ϕ(

√
β),

β‖θ‖2 + 2 log
(
|Λ|/ε

)
2n

)
=
[
1− ϕ

(√
β
)]−1

inf
λ∈Λ

Φ−1
λ

[
C3(λ, θ) + ϕ

(√
β
)

+
log
(
|Λ|/ε

)
nλ

]
,

where

C3(λ, θ) =

∫ (
2− y‖x‖−1

R 〈θ, x〉
)

+
dP(x, y) +

β‖θ‖2

2nλ
.

Let us assume now that the patterns x are in a ball, so that ‖x‖ ≤ R
almost surely. In this case ‖x‖R = R almost surely. Let us remark that
L(P, θ) = L(P, 2Rθ), and let us make the previous result uniform in β ∈ Ξ.
This leads to

Proposition 4.4 Let us assume that ‖x‖ ≤ R almost surely. With proba-
bility at least 1− ε, for all θ ∈ Rd,

L(P, θ) ≤ inf
β∈Ξ

[
1− ϕ(

√
β)
]−1

inf
λ∈Λ

Φ−1
λ

[
2C4

(
β, λ, θ

)
+ ϕ(

√
β) +

log
(
|Ξ| |Λ|/ε)
nλ

]
,

where

C4(β, λ, θ) =
1

2
C3(λ, 2Rθ) =

∫ (
1− y〈θ, x〉

)
+

dP(x, y) +
βR2‖θ‖2

nλ
,

and

Φ−1
λ (q) =

1− exp(−λq)
1− exp(−λ)

≤ q

1− λ

2

.

The loss function C4(λ, θ) is the most employed learning criterion for support
vector machines, and is called the box constraint. It is convex in θ. There
are fast algorithms to compute infθ C4(λ, θ) for any fixed values of λ and β.
Here we get an empirical criterion which could be used to optimize also the
values of λ and β, that is to optimize the strength of the regularizing factor
βR2‖θ‖2

nλ
.
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In this criterion, ‖θ‖−1 can be interpreted as the margin width, that is
the minimal distance of x from the separating hyperplane {x′ : 〈θ, x′〉 = 0}
beyond which the error term

(
1−y〈θ, x〉

)
+

vanishes (for data x that are on the
right side of the separating hyperplane). The speed of convergence depends
on R2‖θ‖2/n. For this reason, R2‖θ‖2, the square of the ratio between the
radius of the ball containing the data and the margin, plays the role of the
dimension. The bound does not depend on d, showing that with separating
hyperplanes and more generally Support Vector Machines, we can get low
error rates while choosing to represent the data in a Reproducing Kernel
Hilbert Space with a large, or even infinite, dimension.

We considered so far only linear hyperplanes and data centered around
0. Anyhow, this also covers affine hyperplanes and data contained in a non
necessarily centered ball, through a change of coordinates. More precisely,
the previous proposition has the following corollary:

Corollary 4.5 Assume that almost surely ‖x − c‖ ≤ R, for some c ∈ Rd

and R ∈ R+. With probability at least 1− ε, for any θ ∈ Rd, any γ ∈ R such
that min

i=1,...,n
〈θ, xi〉 ≤ γ ≤ max

i=1,...,n
〈θ, xi〉,∫

1
[
y
(
〈θ, x〉 − γ

)
≤ 0
]

dP(x, y) ≤ inf
β∈Ξ

[
1− ϕ(

√
β)
]−1

inf
λ∈Λ

Φ−1
λ

[
2C5(β, λ, θ, γ) + ϕ(

√
β) +

log
(
|Ξ| |Λ|/ε

)
nλ

]
,

where

C5(β, λ, θ, γ) =

∫ [
1− y

(
〈θ, x〉 − γ

)]
+

dP(x, y) +
4βR2‖θ‖2

nλ
.

Proof. Let us apply the previous result to x′ = (x − c, R), and θ′ =[
θ, R−1

(
〈θ, c〉 − γ

)]
. We get that ‖x′‖2 ≤ 2R2 and ‖θ′‖2 ≤ 2‖θ‖2, because

almost surely−‖θ‖R ≤ ess inf〈θ, x−c〉 ≤ γ−〈θ, c〉 ≤ ess sup〈θ, x−c〉 ≤ ‖θ‖R,

so that almost surely, for the allowed values of γ,
(
〈θ, c〉−γ

)2 ≤ R2‖θ‖2. This
proves that C4(β, λ, θ′) ≤ C5(β, λ, θ, γ), as required to deduce the corollary
from the previous proposition. �
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