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Chernoff bound and more

Let X;, 1 <¢<n be n independent real valued random
variables.

Let us introduce the empirical mean

deflzX

and its expectation
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Chernoff bound and more
Let us consider the moment generating functions
Yi(A) = log{E[exp(AX;)] },
1 n
PN == ti(n).
i3
They are convex, with values in RU {+o0}.
Consider the dual function

*(z) = sup Az —(\) € Ry U{+o0}.
AeR 4

Proposition (Chernoff)

The deviations of the empirical mean M are such that

P(M > z) <exp[—ny*(z)].
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Chernoff bound and more

Proof.
We use the fact that 1(z > 1) < z, for any z € R.

P(M > z) =E{l[exp(nA\(M —z)) > 1]}
<E[exp(nA(M —z))] = exp{n[¢(N) = z]}, e Ry.

Consequently,

P(M>z) < /\ielllg'+ exp{n[¢Y(\) — Az]} = exp(—nyp*(z)).

O

Let us remark that we have also proved that, for any A € R,
with probability at least 1 —e,
Y(A) | log(e™!)

M
STy T
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Chernoff bound and more

Proposition

Let Aj =sup{\ € Ry : ¢;(\) < 40},

and A =min{Aq,..., A, }.

For any X € [0,A;[, ¥i(X) < 400 and the function 1; is of class
€ on the interval ]0,A;][.

If, moreover, E(|X;|¥) < oo, the function v; is of class €* on
[0,A;].
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Chernoff bound and more

Proof.

Based on the Fubini’s theorem and Lebesgue’s dominated
convergence theorem, to prove that A — E[exp(AX;)] has the
required regularity, starting from the identity

) . B8 .
X exp(BX;) = X! exp(aX;) —1—/ X7 exp(AX;)dA,

O<a<f<A;, j>1

O
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Chernoff bound and more

Proposition

Let us assume that E(X?) < oo and that A; > 0. The second
derivative of ¥; can be seen as a variance:

NS

E[XZexp(AX;)] B (]E [Xiexp(AX;)]

2
E[GXP(AXi)] E[exp()\Xi)] > ’ 0<A<A,,

moreover

A
1/%()\):)\E(Xi)+/0 A —a)y!(a)da, 0< <A,
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Chernoff bound and more

Proof.

We know that 1); is €2, from the previous proposition. So we
can compute " using the rules of composition of derivatives,
and write a Taylor expansion of i; to obtain the last
statement. L]
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Chernoff bound and more

Proposition

Let A >0 and E(X )<oo 1<i<n.

Let V() & % [B(\) = Am] = % /A()\ —a)(a)da, 0<A<A
V)Y sup V(8) eRy U {+o0},
BE[0,A]

def ZE{ X E 2}

> <
ThenIP(M_m—i—ac)_exp( 27 ( x/v ), and

IP(M > m+\l QIOgT(:l) V( 2103;(;1)) > <e.
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Chernoff bound and more

Proof.

As ' (m+a) = Br— VN,

IP(M >m+z) < exp{ Bz — % )] We can then choose
=z/vand f=12/V(\) < to get the first inequality and

A
E—exp{ (B:B—V )] to get
ol

(M >m+— b V()\) )> <'¢, and then choose

[2log(e~1) 21 -1
og T(L){g/((e)\)) to get the second inequality.

O
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Chernoff bound and more

Proposition (Bennett’s inequality)

Let us assume that E(X?) < oo and that X; <E(X;)+b,
1 <4< n. Let us introduce the function

h(u)=(14+u)log(1+u)—u> u?

Under these hypotheses,

nv bx nx?
P(M > < ——h|— || < S —
( _m+x)_exp[ 72 (vﬂ_exp( 2v+2:§’””>7

2vlog(e—! 2vlog(e—1\ ~1/2
]P<M>m+ vog(e)(l_b vog(e) .
n 3v n
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Chernoff bound and more

Proof.
Let us remark first that for any A € R+,

v (m—+1x) > Mz +m) ——Zlog (exp(AX;))]
1=1

= )\x——Zlog{ exp(A(X; —ml))]},

where m; d:efIE(Xi), and write

E[exp(A(X; —m;))] —1 = E[exp(A(X; — my)) —1 = A(X; — m;)]
= B[N (X; —mi)?g(MX; —my))],

where g(y) =y (exp(y) —1—y).
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Chernoff bound and more

Writing the Taylor expansion of z — exp(yz), we get

o) = [[(-2esp(u)dz, yem,

showing that the function g is non decreasing on R.
Consequently, for any integer i such that 1 <i <n,

E[N(X; —mi)2g(A\(X; —my))] S E[N(X; —mi)2g(A\b)].
Therefore,
log{ B [exp(A(X; — mi))] } < A2gAD)E[(X; —m,)?].
Thus,

G (m+1z) > Ae— A2ug(Ab) = Az — %(exp(Ab) —1-Ab).
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Chernoff bound and more

b b
Let us choose \ = bllog<1+x>, to get ¥*(z) > bh( :1;)
v v

Chernoff’s bound then gives the first inequality of the
proposition. 2
~2(14+u/3)’
second inequality. Let us compute the derivatives of h,

h'(u) =log(l+wu), h"(u) =1/(1+u), and then the derivatives of
f(u)=(14+u/3)h(u) —u?/2. We get
f(uw)=h"(u)(14+u/3)+h(u)/3—wu. Thus f(0) =0 and

Let us show now that h(u) > u > —1, to get the

£ = B () (14 u/3)+ 2 (u) /3 — 1 = 11++“/3 glog(H-u) |
2 2u  2h(u)
_§IOg(1+U)_3(1+u)_3(1+u)ZO’ u>—1.
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Chernoff bound and more

The convex function f, sending zero to zero, with a null first
derivative at zero, is therefore everywhere non negative.

Let us put e ( na’ > W t

e=exp| ———|. We ge

P P 2v+% 8
2 -1 2
2 2vlog(e )(wa
3vzx

—1 2 —1yy —1/2
S2vlog(e <1+bx<2vlog(e )) )
n 3v n

We deduce that

-1
—1 -1
2 < 2vlog(e™1) (1_ b [2vlog(e )> 7

n 3v n

proving the third inequality of the proposition. O
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Chernoff bound and more

Proposition (Hoeffding’s inequality)
Let us assume that a; < X; < b;, 1 <i<mn. In this case,

2122
P(M>m+zx) <ex <>,
( ) P (b —ai)?

P <M > m+ \/Z?l(bi — a:)*log(c™") ) <e

2n2

Proof. The second derivative of 1); is the variance of a random
variable taking its values in the interval [a;, b;]. It cannot
therefore be larger than (b; — a;)?/4. Consequently,

A2
P(A) < Am+ gg(bz —a;)?, and therefore
2na?
* P — O
VD) 2 S = ar?
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Let X; € 27, 1 <i<n be independent, where 2" is a
measurable space. Let © be a measurable parameter space and
f: 2 x0 = R, a measurable function.

Assume that ]E[f(Xi,G)z} <400, 0 €0, 1<i<n, and consider

MO)= 23 1(x,00)
i=1
m() = LS B[f(X.0)]
¥i(\,0) = log{ Bexp[Af (X;,0)] },

YO0 = D vi(06).
i=1

A =sup{r:¢()\,0) <c0,0 €O}
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Proposition

Let A>0, and v € #L(©). For any X\ € [0,A],
Elexp(sup{/@n[)\M(H) — (X, 0)]dp(0) — A (p,v),
pE M1 (0),05 AM(0)—()0) €LY (p), A (p,v) <oo}>] <1,

Consequently, with probability at least 1 —e, for any p € #1(0),
such that 0 — AM (0) — (X, 0) € LY(p) and # (p,v) < oo,

v 0 e’l
[10)a00) < 5 [w00)ap(0)+ VLD g
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Proof. Let us recall that # (p,v / log< ) dp whenever

p < v, and is infinite otherwise. From Jensen’s inequality,
whenever p satisfies the hypotheses,

[ nAM6) = 6(0.0)] do(6) ~ # ()

exp

< L[ - w001} (L0 >0) (L0)  a0)

_ /@ exp{n[AM (6) _u}(A,a)]}n(jﬁ(e) > 0> dv(6)

< /@ exp{n[AM(6) ~().0)] } dv ().
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We can then apply Fubini’s theorem for non negative functions,
to get

E{exp[ sup /en[/\M(H) — (X, 0)] dp(0) —%(P,V)}}

pEM L (O)

< ]EU@ exp{n[AM (9) —¢(A,9)]}du(9)]
:/@E{exp{n[AM(@)—w(A,G)]}} dv(0) = 1.

The second part of the proposition is a consequence of Markov’s
inequality. U
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Let us put m;(0) = E[f(X;,0)],

ZE{ f(X0,0) = mi(9)]* .

%wu,e)—xm(e)],

V(A\0)= sup V(3,0)
BE[O,A]

V(\0) =

and let us assume that v % supv(6) < oo and
0cO
def

V(A) =sup V(A 0) <oo, 0 <A< A.
fco

20,72
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Proposition

Under the previous hypotheses, for any positive constant c,

E (:sup{ [ 12(6) = m(©)] ap0):
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In particular, when © is a finite set, taking ¢ =log(|0|), p =g
et v(0) =10]71, 6 € O, we get

E{sup[M(6) - m(0)]} <

0co n nv

210g(|0)) V( 2log(|0)) )



Uniform deviation bounds 23/72
PAC-Bayes bounds

Proof.

From the proof of the previous proposition, the argument of the
expectation to be bounded is not greater than

nl)\log{/exp[n[)\M(ﬁ)—1[)()\,9)]}dy(g)}_|_)‘v2()‘) +%’

and we conclude with the help of Jensen’s inequality. We get in
AV (A
this way the first upper bound inf () + £ that we can
[0 AN 2 An
V(ﬁ)

weaken to get <115\1£ —|— . To get the second upper

bound, we should choose [ = 1/ and A= /
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Proposition

Under the previous hypotheses, for any positive constant c, with
probability at least 1 —¢,

sup{ [ [M(6) ~ m(6)]dp(0);
p € MLO),0 M(B)—m(8) € L'(©), 4 (p,v) < c}

a7 -1
< inf AV (N) n c+log(e™)
Ae[o, A 2 An

- J 2[c+1log(e )] V(\/2[c+log(e—1)] )
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In particular, when © is a finite set, with probability at least
1—e¢

) B n nv

sup[M(60) — m(9)] < J 2og(1O1/e) V( MGW@)

Proof.

This is a direct consequence of Equation (1) and of the
NV (N
2

inequality (), 0) < +Am(6). O
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Let us assume that © = B, = {0 € R%;||0|| < 1} and that there
exist two positive constants B and g such that

Supf(x,@)— inf f(z>9)§B’ 0 € By,
el zed

|f(fll,9)—f(£l?,0l)|SQHH—H/H, zE%, Hyelele-

Let us consider the value of the parameter where the empirical
risk takes its minimum value

0 in M(0).
€ otk joip M(6)
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Proposition
With probability at least 1 —e,

m(9) Seiergdm(e)‘f'B{\/ilog(lﬁ-lgﬁ) +10g2(i/6)

Thus, the quality of the estimation depends on the ratio d/n.
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Proof. Let us put f(z,0) = f(x,0/]|0]), 6 € R\ By.

Let 6 > 0 and v the uniform measure on the ball (1+0)B, of
radius 1+ 9.

For any 0 € By, let pg be the uniform probability measure on
the ball 8 4+ 6B, centered at 6 and of radius 0.

As the volume of a ball in R? is proportional to its radius raised
to the power d,

1446
Jf/(pg,l/):dlog(j;>, 0 cBy.

From the previous proposition and Hoeffding’s inequality, with
probability at least 1 —e¢, for any 6 € By,

[m@)dp@) S/M(G/)dpg(ﬂ')—i—B\/dlog(l+5_2sz tlog(e™])
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We deduce, still with probability at least 1 —e, that

- A dlog(1+6-1) +log(e!
m(@)SM()—i—Qg(H—B\/ og(1+ 23+°g(6 ).

Let 6, € argmingep, m(#) (reached because By is compact).

log(e~1)

2n
By construction of 6, M(6) < M(6,). Consequently, with
probability at least 1 — 2e,

m(@) < m(ﬂ*)+B{\/d log(1+071) +log( ) +\/ T }”95'

With probability at least 1 —e¢, M(0,) < m(6.)+ B

2n

B |d
To conclude, choose § = — 1/ — and replace € with €/2.
4g \ 2n
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Let © = R?. Assume that for some measurable function
(z,0) — Vf(z,0) € RY, and some positive constants g and H,
for any = € 2 and any 0,6’ € R?,

’f(ﬂj‘,g) _f(x79/)‘ < 9”9_9/"7
F(e,0) 1 (2.0) — (V1 (x,0).6/ ~ ) < 10/ ~6]

Let 6, € arg Om]iBn m(6), and consider, for any h > 0, the function
€lBq

h
X() = sup X602 - m(6) + m(0,),
0eBy
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Proposition

Under these hypotheses, the empirical minimizer,

0 e arggm}iBn M(0) of m on the unit ball is such that with
€lBg

probability at least 1 —¢

~ 2 H dx(h
160 — 0. < 89 {<8+1>d+2log(el)] —i—M

nh? [\ h
N 2
and m(0) —m(6,) < 4% [(85 + 1> d+2log(e‘1)} +x(h).
n

In the case when there is h > 0 such that x(h) =0, we thus get
a convergence speed of order d/n instead of \/d/n, under
stronger hypotheses than in the previous proposition.
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Proof. Let pg= .4 (0,7'1) and v = py, .
Let us remark that % (pg,v) = §||9—9*H2.

Let us apply Equation (1) to the function
(z,0) — f(z,0,) — f(z,0). From Hoeffding’s inequality,

log Bexp{ A[f(X,0.) — f(X,0)] } = A[m(6.) — m(6)]

2 210 _n 12
§A9H@2 9*||.

Consequently, with probability at least 1 —e¢, for any 6§ € By,

[ mi@)dpo(®) ~m(e.) < [ 116" dpa(®') ~ 11(6.)

B0 —0.]>  log(e™)
+ 2n\ + n\

A 2
+22 [~ 0,112 dpal®)
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Moreover,
[ m(@)ann(@') = m(o)

+E[/[f(X70,) _f(ng)_ <Vf(X70)70/_9>} dp@(el)

H [, ) Hd
> m(0) = [16/ =012 dpa(0)) = m(6) - 5.
Hd

In the same way, /M(G') dpe(0") < M(0) + 5
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Thus with probability at least 1 —e¢, for any 6 € By,

Hd \g?d )\g

m(0) —m(0.) < M(0) — M(0.) + — 5t 16— 6.
BH9—9*H2 log(e™!)
+ 2n + n\x

We can then use the fact that m(0) —m(6,) > g||9—0*||2 —x(h)

and that by construction M (A) < M(6,). We conclude that with
probability at least 1 —e¢

ho~ d Ag?
10— 0. < x(h)+ = ( H+ =~
=012 < x(w+ 5 (1 +°F)

Ag? 2, 1082(671)
+<2 + )He 22
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Thus
~ g2 B 2x(h) Qd( )\92> 2log (e 1)
2
— 0, e )< o (HA S | —
160 (1 h m\h) e\ T2 ) T

2
andﬁ:n—)\h:ﬂ. We get
g

IN

Let us then choose \ = 1

&
no

2v(h)  32¢%d h 8¢2log (e 1
x(h) | 32g (H+8>+g gle™))

L.~ 2
219 — < ZAAY
2H0 0" < h + nh3 nh?

This gives the first upper bound of the proposition.
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To prove the second upper bound, let us use the fact that
. 2 Iy
10 —6.% < = [m(0) —m(6«) + x(h)], to obtain

m(0) —m(8,) < Z(H+Ag)
og(e !
(P ) 2 @) - mio) ) + )

2 2n\/ h nA

We conclude in the same way, replacing A and S by their values.
O
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Let Wi., € #" be an i.i.d. sample, on a measurable space # .
Let P®" € .41 (#™) be the distribution of Wi.p,.

Let © be a measurable parameter space, and L: # x © — {0,1}
a binary measurable loss function.

Our aim will be to minimize the expected loss /L(w,@) dP(w).

In the setting of supervised classification, # = 2" x %, where
Z is a pattern space and % a finite set of classes. Accordingly,
W; = (X;, Y;) are input-output pairs.

We are given a family of measurable classification rules

{fo: Z = %,0€ 0O}, and L is defined as

L[(z,y),0] =1(fy(z) #y), so that the loss

J L(w,0)dP(w) =Px y(fy(X) # Y) is equal to the expected
classification error.

The point of view exposed here is a synthesis of the approaches
of [9] and [2].
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def _l

For any A € R, let ®)(p) = )\log[l —p+pexp(=A)], and
def q l—q

K(q,p) = qlog()—i— 1—g¢ log().

(4.0) 1)+ (- q)tog (1

1>

Let P==) dw,.

e n; W
For any p,m € .4} (©) and any integrable function
feL (¥ xO2PRr®p), let

FPopm) = [ £(.0,6)dP(w)dp(6) dr(®'),

s that L(P, p) — / L(w,0)dP (w)dp(6).
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For any probability measures m and p defined on the same
measurable space, such that .# (p,7) < oo, and any bounded
measurable function h, let us define the transformed probability
mMeasure Teyp(p) <K 7 by its density

dTexp(n) _ exp(h)
dm zZ

where Z = [exp(h)dm. Let us moreover introduce the notation

Var(hdr) = [(h— [hdr)’dr.
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Proposition

The expectations with respect to p and m of h and the
log-Laplace transform of h are linked by the identities

fhdp—%(pvﬂ) +%(p77rexp(h)) = 10g [fexp(h) d’]T] (2)
= [hdr+ [o(1— ) Var [hdTepan)] da.  (3)

Proof.

Equation (2) is a straightforward consequence of the definitions.
Equation (3) is the Taylor expansion of of the function
a > log[[exp(ah)dr]. O
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0
Let B+(q,5)—/\ier]1£+<1>>_\1<q+)\>
—sup{p€[0,1]: K(g,p) <3},  q€[0,1], 6€Ry,

0
and B_(q,0) = 16111}{+<I> ()+X

=sup{p€[0,1]: K(p,q) <3}, q€[0,1], 6€Ry,
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Proposition

For any non random 6 € ©, with probability at least 1 —¢,
L(P,0) < By [L(P,0),log(e ") /n],

Moreover

—0qg < B4(q,0)—q—1/20q(1—q) <25(1—q).

In the same way, with probability at least 1 —¢

L(P.0) < B_[L(P,0).log(c"")/n],

—0q < B_(q,6) —q—1/2d¢(1—q) <20(1—q).

and
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Proof. From Chernoff’s bound, with probability at least 1 —e,

o [1(P.0)] - ) < 1),

Since the left-hand side is non-random, it can be optimized in
A, giving
L(P,0) < By [L(P,0),log(e 1) /n].
. . _ o . l—exp(—Ag—9)
lim ®)* ~)=1

Since Ariso A <Q+ A) Arbse 1 —exp(—A)
Bi(q,0) < 1. Applying equation (2) to Bernoulli distributions
gives

<1,

A®\(p) =Aq¢+K(q,p) — K(q,p»)

where
p

p+(1—p)exp(A)’

Px=
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This shows that

)
B4 (q,9) =Sup{p €01 @A(p) S g+, A€ R+}

=sup{p € [¢,1]: K(q,p) <3+ K(g,p2), A€ Ry |
= sup{p € [q,1[: K(4.p) <3}
= sup{p € [0,1] : K(q,p) <},

-1

qg  —1
R
p_1_1> +5

because when ¢ < p <1 we can choose A = log(

for which ¢ = py and therefore K(q,py)=0.
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2
Let us remark now that 8—K(ac,p) =z '(1—2)7!. Thus if

0z?
p>q>1/2, then

(p—q)*
K(va) 2 m7

so that if K(q,p) <9, then

p<q+1/20q(1—q).

Now if ¢ <1/2 and p > ¢ then

(p—q)?
K(g,p) > < 2p(1—p)’ p=1/2 ZM,
2p—q? px172] PA-0
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so that if K(gq,p) <9, then
(p—q)* <20p(1—q),
implying that
p—g<6(1- Q)+\/25Q(1 —q)+6*(1—¢)*< \/25q(1 —q)+26(1—q).
On the other hand,

(p—q)? (p—q)?
K(q,p) < — < ,
(2:7) 2min{q(1—q),p(1—p)} ~ 2¢q(1—p)
thus when K(g¢,p) = ¢ with p > ¢, then

(p—q)*>25q(1-p),

implying that

p—q> —5q+\/25q(1—q)+(52q2 > \/25(1(1—Q)_5q~

Reverse inequalities are proved in the same way.
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Proposition

Given any set A C Ry, let By(q,0) = ;n/f\@;1 <Q+i>'
€

For any prior probability measure m € A} (0) and any A € Ry,

dP®" <1,

(4)
and therefore for any finite set A C R, with probability at least
L—¢, for any p € ML(O),

/exp[ sup n)\{fb)\ [L(P,p)] —L(F,p)} — X (p,m)
peML(O)

n

L(P.p) < By (L(]P’p)’ %/(P,Tr)—l—log(AVe))’
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Proof.

The exponential moment inequality (4) is a consequence of
Equation (2), showing that

exp{ sup n/\/{é,\[L(IP,Q)} —L(F,O)}dp(@) —Ji/(p,w)}

pea1(O)
</ exp[n)\{@A[L(IP,H)} L, 9)}} dr(0),
and of the fact that @) is convex, showing that
) [L(P,p)] < / ) [L(P,0)] dp(6).

The deviation inequality follows as usual. O
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Let us define the least increasing upper bound of the variance of
a Bernoulli distribution of parameter p € [0,1] as

5(p) = {p(l -p), p<1/2,

1/4, otherwise.
Let us choose some positive integer parameter m and let us put

A n
~ 1 %\ Blog[(m+1)/e] )0




Supervised classification 50,72
PAC-Bayes bounds

Let us define

B.(q,e,€) = max{\/2v(q){e+log[(m+1)/e}} cosh(t/m)

n

N 2(1—q){e+log[(m+1)/e]} cosh(t/m)?,

2{e+log[(m+1)/e]}}

n

S wv(q){eﬂog[(mn/en

n

N 2{e+log[(nm+1)/e]}

cosh(t/m)

cosh(t/m)>?.
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Let us also consider

cosh[log(n) ]

B(g,e.¢) d:ﬁ 25(q){ e +log[log(n)?/c]}

n

%_2{€+40ggjg002/d}

2

cosh[log(n)™]

51/72
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Proposition
With probability at least 1 —e, for any p € M1 (O),
L(P,p) < L(P,p) + B [L(P, p), # (p,7), €],

Moreover, as soon as n>5, Biogm)2|-1(; €,€) < B(q, e,¢€), so
that with probability at least 1 —e, for any p € #1(0),

L(P,p) < L(P, p)

+J 20[L(P, )] {  (p,m) +logllog(n)2/e]

n

cosh[log(n)™]

28 4 (p, ) +log[log(n)? /e
. {#(p >+ng[ o >/]}Cosh[log(n)_1]g.
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Let us put
q= L(Fap)7
5 K (p,m)+log[(m+1)/€]
_ \/810g[(m+1)/e],

A= {A}n;’f/m,k:o,...,m},
5
_ _ -1 o
p = Ba(q,9) _ig% <q+ )\>,
26

A=V a0y

53,72
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According to equation (3) applied to Bernoulli distributions, for
any A € A,

1 /A 0
PA(p)=p—+ | A=a)pa(l=pa)da< g+,
AJo A
As moreover p, < p,
o Au(p) 8 — )
— ¢ < inf — = inf /2 hilog| =~ )|.
a2y - g )

As 7(p) <1/4 and 6 > w,

n

26 A_/\min:\/Slog[(m—&-l)/e]‘

n
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Therefore either Apin < hy <1, or X > 1. Let us consider these
two cases separately

If Amin = minA < A < maxA = 1, then log ()\) is at distance at
most t/m from some log()\) where X € A, because log(A) is a
grid with constant steps of size 2¢/m. Thus

p—q< \/Mcosh(t/m).

If moreover ¢ < 1/2, then 7(p) < p(1— q), so that we obtain a
quadratic inequality in p, whose solution is less than

p<q+ \/M(nsh(t/m) +26(1— q)cosh(t/m)z.

If on the contrary ¢ > 1/2, then 7(p) =v(q) =1/4 and

p < q+1/200(q)cosh(t/m),
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so that in both cases
p—q<1/260(q)cosh(t/m)+25(1— q)cosh(t/m)2. (6)

Let us consider now the case when A > 1. In this case 7(p) <20,
so that

+4 <26

7(p)
—g <
P=gs—

In conclusion, applying Proposition 14 we see that with
probability at least 1 — e, for any posterior distribution p,

L(P,p)<p< q—|—max{25, 26w (q)cosh(t/m)+25(1— q)cosh(t/m)Q},

which is precisely the statement to be proved.
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In the special case when m = |log(n)?] —1 >1log(n)? -2,

t 1 n _
m = 4[log(n)? —2] 1Og<810g[log(n)2 — 1]) < log(n)™

as soon as the last inequality holds, that is as soon as
n > exp(v/2) ~ 4.11 to make log(n)? — 2 positive and

3log(n)% —8+log(n) 10g{810g [log(n)* —1] } >0,

which holds true for any n > 5, as can be checked numerically.
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Linear binary classification

Let # = 2 x% =R x {~1,+1}, and
L(w,0) = L((z,y),0) =1 [<67$> y< 0]

We will follow the approach presented in [5] and [8].

The bounds that does not depend on d can be generalized to
the case where the pattern space 2 is a Hilbert space of
infinite dimension. They apply to Support Vector Machines,
where we have an implicit mapping ¥ : 2" — ¢, into a Hilbert
space ., where © = 7% and where L(w,0) =1((0,¥(z))y <0).
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Support Vector Machine algorithms are defined in terms of the
scalar product k(z1,22) = (V(z1),¥(22)), defining a positive
symmetric kernel k on the original pattern space 2 . According
to the Moore-Aronszajn theorem, k may be any positive
symmetric kernel. Popular kernels on 2" = R% are

k(z1,22) = (14 (z1,22))", for which dim# < oo,
k(zy,7) = exp(—|lz1 — 22||?), for which dim ./# = +oc.
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Let us consider, after [5, 8] as prior probability measure 7 the
centered Gaussian measure with covariance 37 '1d, so that

%w) _ (i)d/gexp(—ﬁ”gw)-

Let us also consider the function

1 +oo
gp(x):m/ exp(—t%/2)dt, reR
11 z?
<min{ —— = — .
_mln{xm,2}exp< 2), re R4

Let my be the measure 7 shifted by 6, defined by the identity

/ h(6') dry (') = / 10 +0)dr(6').
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In this case 5
H (g, =L 1160)7,
and

L(w,mg) = [v/Bylz||~*(0,2)].

To get an insight on L(w,#) itself, let us introduce the error
with margin

M(w,0) =1y~ (6,2) <1].
The error with margin region is the complement of the open
cone {z € R4; y(0,z) > |z|}.
Let us compute the randomized margin error

M (w,mg) = o{ VB[yllz| " (0,2) —1] }
It satisfies the inequality

M(%M)Z@(—\/B)L(wa@): [1_90(\@)]1’(“}70)' (7)
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Proposition
With probability at least 1 —e, for any 6 € RY,

L(P,0) < [1—o(V/B)] " M (P, m) < C1(6),

where

0= 1-o(vA) 5 (P, T ).

the bound B being defined by equation (5).

Let 6 be any estimator satisfying

~

C1(0) < jinf, C1(0) +.



Supervised classification 63/72

Linear binary classification

~

For any fixed non random parameter 6., C;(6) < C1(0,)+¢. On
the other hand, with probability at least 1 —e¢

— log(e™?
M(IP77T9*) < B <M(IP,7T9*), Og(e )>7 since
n

/exp{n)\ [M(P,mg,) — P_\[M(P,mp,)] } dP®”

< /exp{n)\/{M(IP,H) —Q_A[M(P,G)}dm*(e)}dIP@" <1,

the function p — —®_(p) being convex.
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As a consequence

Proposition
With probability at least 1 — 2e,

i [1- (VB B(B (M2 ), ) PIBE
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Linear binary classification

It is also possible to state a result in terms of empirical margins.
Indeed

M (w,mp) < M(w,0/2) +¢(VB).
Thus with probability at least 1 —e, for any 6 € R?,

L(P,0) < Cx(0),

where

C:(0) = [1- ¢(VB)) " B(MP.0/2)+o(V5), 2 ”9”2,6)-
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The criterions €7 and Cy are non-convex, faster minimization
algorithms are available for the usual SVM loss function, that
we are going to study now.

Let us choose some positive radius R and let us put
|lz||r = max{R,]||z||}, so that in the case when ||z| < R,
=]z = R.

M (w,mg) = ¢[v/B(yllzll~'(0,2) —1)]

< (2-ylzlz'0.2))  +o(VB). (8)

Using the upper bounds (8) and (7), and Proposition 14, we
obtain
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Proposition

With probability at least 1 —e, for any 6 € R,

L(P,60) < [1-0(vB)] "B ( [ @~ sllal50,2)) , dB(a,) +0(/B).
PO +2log((1/)

2n

= (-e(VA) s [0+t vB) + S
where
2
0 = [ ylellz' (6.5)),, dB(,y) + DL
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Let us assume now that the patterns z are in a ball, so that
|z|| < R almost surely.
In this case ||z||g = R almost surely.

Let us remark also that L(IP,0) = L(IP,2R0),

1—exp(=Ag) _ ¢
1—exp(—A) — 1_5‘
2

and that ®,'(q) =
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Proposition

Let us assume that ||z|| < R almost surely. With probability at
least 1 —e¢, for all 6 € R4,

LP.0) < int [1—p(v/B) " fnf @7 [2G4(5.0.0)

1 = A
—i—cp(\/B) 4 og(]n])\\/e) ,
where

2 2
Co(82,0) = Co(02R0) = [ (1= y(0,2)) , aP(a, )+ P IO
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The loss function Cy(A,6) is called the box constraint.

It is convex in . There are fast algorithms to compute
infyg Cy(\,0) for any fixed values of A and f.

Here we get an empirical criterion which could be used to
optimize also the values of A and [, that is to optimize the
BR?|0]1”

nA

In this reguralizing factor, ||@|~! plays the role of a margin
width, that is the minimal distance of x from the separating
hyperplane {z’: (#,2’) = 0} beyond which the error term
(1—y(0,z)), vanishes .

strength of the regularizing factor

The speed of convergence depends on R?(|0||?/n, where R?||6)]|?,
plays the role of the dimension and is independent of d.
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Corollary

Assume that almost surely ||z — c|| < R, for some ¢ € R? and
R € R,. With probability at least 1 —e, for any 0 € R?, an
v € R such that nllin 0,2;) <y < max 0,z;),

1=1,...,n 1=1,...,n

-1

/11 (0.2) ) <0)dB(z.y) < inf [1 —(V/F)]

log(|Z] |A
Airelgcbgl[205(5,A,9,7)+¢(\f5)+Og(‘n‘w 7
where
_ R2 0 2
o807 = [ y((0.2) )] aP(z, )+ P
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Proof.

Let us apply the previous result to 2’ = (z — ¢, R), and

0 = [0,R((6,c) )]

We get that ||z/[|? < 2R? and ||¢/]|? < 2]|6]||?, because almost
surely

—|I0||R < essinf(f,z — c¢) <~y — (0, c) <esssup(f,z—c) < ||0||R,
so that almost surely, for the allowed values of ~,

((0.c) =) < B2|10].

This proves that Cy(3,A,0") < C5(8, A, 0,7), as required to
deduce the corollary from the previous proposition. O
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