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Chernoff bound and more

Let Xi , 1≤ i ≤ n be n independent real valued random
variables.

Let us introduce the empirical mean

M
def= 1

n

n∑
i=1

Xi

and its expectation

m
def= E(M ) = 1

n

n∑
i=1

E(Xi).
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Chernoff bound and more

Let us consider the moment generating functions

ψi(λ) = log
{
E
[
exp(λXi)

]}
,

ψ(λ) = 1

n

n∑
i=1

ψi(n).

They are convex, with values in R∪{+∞}.

Consider the dual function

ψ∗(x ) = sup
λ∈R+

λx −ψ(λ) ∈R+∪{+∞}.

Proposition (Chernoff)

The deviations of the empirical mean M are such that

P
(
M ≥ x

)
≤ exp

[
−nψ∗(x )

]
.
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Chernoff bound and more

Proof.

We use the fact that 1
(
z ≥ 1

)
≤ z , for any z ∈R+.

P(M ≥ x ) = E
{
1
[
exp

(
nλ(M −x )

)
≥ 1

]}
≤ E

[
exp

(
nλ(M −x )

)]
= exp

{
n
[
ψ(λ)−λx

]}
, λ ∈R+.

Consequently,

P
(
M ≥ x

)
≤ inf
λ∈R+

exp
{

n
[
ψ(λ)−λx

]}
= exp

(
−nψ∗(x )

)
.

Let us remark that we have also proved that, for any λ ∈R+,
with probability at least 1− ε,

M <
ψ(λ)
λ

+ log(ε−1)
nλ

.
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Chernoff bound and more

Proposition

Let Λi = sup
{
λ ∈R+ : ψi(λ)<+∞

}
,

and Λ = min{Λ1, . . . ,Λn
}

.

For any λ ∈ [0,Λi [, ψi(λ)<+∞ and the function ψi is of class
C∞ on the interval ]0,Λi [.
If, moreover, E

(
|Xi |k

)
<∞, the function ψi is of class C k on

[0,Λi [.
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Chernoff bound and more

Proof.

Based on the Fubini’s theorem and Lebesgue’s dominated
convergence theorem, to prove that λ 7→ E

[
exp(λXi)

]
has the

required regularity, starting from the identity

X j−1
i exp(βXi) = X j−1

i exp(αXi) +
∫ β

α
X j

i exp(λXi)dλ,

0< α < β < Λi , j ≥ 1.
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Chernoff bound and more

Proposition

Let us assume that E
(
X 2

i

)
<∞ and that Λi > 0. The second

derivative of ψi can be seen as a variance:

ψ′′i (λ) =
E
[
X 2

i exp(λXi)
]

E
[
exp(λXi)

] −(E[Xi exp(λXi)
]

E
[
exp(λXi)

] )2

, 0≤ λ < Λi ,

moreover

ψi(λ) = λE(Xi) +
∫ λ

0
(λ−α)ψ′′i (α)dα, 0≤ λ < Λi .
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Chernoff bound and more

Proof.

We know that ψi is C 2, from the previous proposition. So we
can compute ψ′′ using the rules of composition of derivatives,
and write a Taylor expansion of ψi to obtain the last
statement.
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Chernoff bound and more

Proposition

Let Λ> 0 and E
(
X 2

i

)
<∞,1≤ i ≤ n.

Let V (λ) def= 2

λ2
[
ψ(λ)−λm

]
= 2

λ2

∫ λ

0
(λ−α)ψ′′(α)dα, 0≤ λ < Λ

V (λ) def= sup
β∈[0,λ]

V (β) ∈R+ ∪ {+∞},

v
def= V (0) = 1

n

n∑
i=1

E
{[

Xi −E(Xi)
]2}

Then P
(
M ≥m + x

)
≤ exp

(
− nx 2

2V (x/v)

)
, and

P

(
M ≥m +

√√√√2log(ε−1)
n

V

(√
2log(ε−1)

nv

) )
≤ ε.
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Chernoff bound and more

Proof.

As ψ∗(m + x )≥ βx − β2

2 V (λ),

P
(
M ≥m + x

)
≤ exp

[
−n

(
βx − β2

2 V (λ)
)]

. We can then choose

λ= x/v and β = x/V (λ)≤ λ to get the first inequality and

ε= exp

[
−n

(
βx − β

2

2
V (λ)

)]
to get

P

(
M ≥m + β

2
V (λ) + log(ε−1)

nβ

)
≤ ε, and then choose

λ=

√
2log(ε−1)

nv
≥ β =

√
2log(ε−1)

nV (λ) to get the second inequality.
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Chernoff bound and more

Proposition (Bennett’s inequality)

Let us assume that E
(
X 2

i

)
<∞ and that Xi ≤ E(Xi) + b,

1≤ i ≤ n. Let us introduce the function

h(u) = (1+ u) log(1 + u)−u ≥ u2

2(1 + u/3) , u ∈R+.

Under these hypotheses,

P
(
M ≥m + x

)
≤ exp

[
−nv

b2
h

(
bx

v

)]
≤ exp

(
− nx 2

2v + 2bx
3

)
,

P

(
M ≥m +

√
2v log(ε−1)

n

(
1− b

3v

√
2v log(ε−1

n

)−1/2)
≤ ε.
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Chernoff bound and more

Proof.
Let us remark first that for any λ ∈R+,

ψ∗(m + x )≥ λ(x + m)− 1

n

n∑
i=1

log
[
E
(
exp(λXi)

)]
= λx − 1

n

n∑
i=1

log
{
E
[
exp

(
λ(Xi −mi)

)]}
,

where mi
def= E(Xi), and write

E
[
exp

(
λ(Xi −mi)

)]
−1 =E

[
exp

(
λ(Xi −mi)

)
−1−λ(Xi −mi)

]
= E

[
λ2(Xi −mi)2g

(
λ(Xi −mi)

)]
,

where g(y) = y−2
(
exp(y)−1−y

)
.
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Chernoff bound and more

Writing the Taylor expansion of z 7→ exp(yz ), we get

g(y) =
∫ 1

0
(1− z )exp(yz )dz , y ∈R,

showing that the function g is non decreasing on R.
Consequently, for any integer i such that 1≤ i ≤ n,

E
[
λ2(Xi −mi)2g

(
λ(Xi −mi)

)]
≤ E

[
λ2(Xi −mi)2g(λb)

]
.

Therefore,

log
{
E
[
exp

(
λ(Xi −mi)

)]}
≤ λ2g(λb)E

[
(Xi −mi)2

]
.

Thus,

ψ∗(m + x )≥ λx −λ2vg(λb) = λx − v

b2

(
exp(λb)−1−λb

)
.
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Chernoff bound and more

Let us choose λ= b−1 log

(
1 + bx

v

)
, to get ψ∗(x )≥ v

b2
h

(
bx

v

)
.

Chernoff’s bound then gives the first inequality of the
proposition.

Let us show now that h(u)≥ u2

2(1 + u/3) , u >−1, to get the

second inequality. Let us compute the derivatives of h,
h ′(u) = log(1+u), h ′′(u) = 1/(1+u), and then the derivatives of
f (u) = (1+ u/3)h(u)−u2/2. We get
f ′(u) = h ′(u)(1 + u/3) + h(u)/3−u. Thus f ′(0) = 0 and

f ′′(u) = h ′′(u)(1+u/3)+2h ′(u)/3−1 = 1 + u/3

1 + u
+ 2

3
log(1+u)−1

= 2

3
log(1 + u)− 2u

3(1+ u) = 2h(u)
3(1 + u) ≥ 0, u >−1.
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Chernoff bound and more

The convex function f , sending zero to zero, with a null first
derivative at zero, is therefore everywhere non negative.

Let us put ε= exp

(
− nx 2

2v + 2bx
3

)
. We get

x 2 = 2v log(ε−1)
n

(
1+ bx 2

3vx

)

≤ 2v log(ε−1

n

(
1+ bx 2

3v

(
2v log(ε−1)

n

)−1/2)
.

We deduce that

x 2 ≤ 2v log(ε−1)
n

(
1− b

3v

√
2v log(ε−1)

n

)−1
,

proving the third inequality of the proposition. �
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Chernoff bound and more

Proposition (Hoeffding’s inequality)

Let us assume that ai ≤Xi ≤ bi , 1≤ i ≤ n. In this case,

P
(
M ≥m + x

)
≤ exp

(
− 2n2x 2∑n

i=1(bi −ai)2
)
,

P

(
M ≥m +

√∑n
i=1(bi −ai)2 log(ε−1)

2n2

)
≤ ε.

Proof. The second derivative of ψi is the variance of a random
variable taking its values in the interval [ai ,bi ]. It cannot
therefore be larger than (bi −ai)2/4. Consequently,

ψ(λ)≤ λm + λ2

8

n∑
i=1

(bi −ai)2, and therefore

ψ∗(m + x )≥ 2nx 2∑n
i=1(bi −ai)2

. �
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PAC-Bayes bounds

Let Xi ∈X , 1≤ i ≤ n be independent, where X is a
measurable space. Let Θ be a measurable parameter space and
f : X ×Θ→R, a measurable function.
Assume that E

[
f (Xi ,θ)2

]
<+∞, θ ∈Θ, 1≤ i ≤ n, and consider

M (θ) = 1

n

n∑
i=1

f (Xi ,θ),

m(θ) = 1

n

n∑
i=1

E
[
f (Xi ,θ)

]
,

ψi(λ,θ) = log
{
Eexp

[
λf (Xi ,θ)

]}
,

ψ(λ,θ) = 1

n

n∑
i=1

ψi(λ,θ),

Λ = sup
{
λ : ψ(λ,θ)<∞,θ ∈Θ

}
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PAC-Bayes bounds

Proposition

Let Λ> 0, and ν ∈M 1
+(Θ). For any λ ∈ [0,Λ[,

E

[
exp

(
sup

{∫
Θ

n
[
λM (θ)−ψ(λ,θ)

]
dρ(θ)−K (ρ,ν),

ρ∈M 1
+(Θ),θ 7→ λM (θ)−ψ(λ,θ)∈L1(ρ),K (ρ,ν)<∞

})]
≤ 1.

Consequently, with probability at least 1− ε, for any ρ ∈M 1
+(Θ),

such that θ 7→ λM (θ)−ψ(λ,θ) ∈ L1(ρ) and K (ρ,ν)<∞,∫
M (θ)dρ(θ)≤ 1

λ

∫
ψ(λ,θ)dρ(θ) + K (ρ,ν) + log(ε−1)

nλ
. (1)
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PAC-Bayes bounds

Proof. Let us recall that K (ρ,ν) =
∫

log

(
dρ

dν

)
dρ whenever

ρ� ν, and is infinite otherwise. From Jensen’s inequality,
whenever ρ satisfies the hypotheses,

exp

[∫
Θ

n
[
λM (θ)−ψ(λ,θ)

]
dρ(θ)−K (ρ,ν)

]
≤
∫

Θ
exp

{
n
[
λM (θ)−ψ(λ,θ)

]}
1

(
dρ

dν
(θ)> 0

)(
dρ

dν
(θ)
)−1

dρ(θ)

=
∫

Θ
exp

{
n
[
λM (θ)−ψ(λ,θ)

]}
1

(
dρ

dν
(θ)> 0

)
dν(θ)

≤
∫

Θ
exp

{
n
[
λM (θ)−ψ(λ,θ)

]}
dν(θ).
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PAC-Bayes bounds

We can then apply Fubini’s theorem for non negative functions,
to get

E

{
exp

[
sup

ρ∈M 1
+(Θ)

∫
Θ

n
[
λM (θ)−ψ(λ,θ)

]
dρ(θ)−K (ρ,ν)

]}

≤ E
[∫

Θ
exp

{
n
[
λM (θ)−ψ(λ,θ)

]}
dν(θ)

]
=
∫

Θ
E

[
exp

{
n
[
λM (θ)−ψ(λ,θ)

]}]
dν(θ) = 1.

The second part of the proposition is a consequence of Markov’s
inequality. �
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PAC-Bayes bounds

Let us put mi(θ) = E
[
f (Xi ,θ)

]
,

v(θ) = 1

n

n∑
i=1

E
{[

f (Xi ,θ)−mi(θ)
]2}

,

V (λ,θ) = 2

λ2
[
ψ(λ,θ)−λm(θ)

]
,

V (λ,θ) = sup
β∈[0,λ]

V (β,θ)

and let us assume that v
def= sup

θ∈Θ
v(θ)<∞ and

V (λ) def= sup
θ∈Θ

V (λ,θ)<∞, 0≤ λ < Λ′.
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PAC-Bayes bounds

Proposition

Under the previous hypotheses, for any positive constant c,

E

(
sup

{∫
Θ

[
M (θ)−m(θ)

]
dρ(θ);

ρ ∈M 1
+(Θ),θ 7→M (θ)−m(θ) ∈ L1(ρ),K (ρ,ν)≤ c

})

≤ inf
λ∈[0,Λ′[

λV (λ)
2

+ c

λn
≤

√
2c

n
V

(√
2c

nv

)
.
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PAC-Bayes bounds

In particular, when Θ is a finite set, taking c = log(|Θ|), ρ= δθ
et ν(θ) = |Θ|−1, θ ∈Θ, we get

E
{

sup
θ∈Θ

[
M (θ)−m(θ)

]}
≤

√√√√√2log
(
|Θ|
)

n
V

(√
2log

(
|Θ|
)

nv

)
.
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PAC-Bayes bounds

Proof.

From the proof of the previous proposition, the argument of the
expectation to be bounded is not greater than

1

nλ
log

{∫
exp

[
n
[
λM (θ)−ψ(λ,θ)

]]
dν(θ)

}
+ λV (λ)

2
+ c

λn
,

and we conclude with the help of Jensen’s inequality. We get in

this way the first upper bound inf
λ∈[0,Λ′[

λV (λ)
2

+ c

λn
that we can

weaken to get inf
0≤λ≤β

λV (β)
2

+ c

λn
. To get the second upper

bound, we should choose β =
√

2c

nv
and λ=

√
2c

nV (β) ≤ β.



Uniform deviation bounds 24/72

PAC-Bayes bounds

Proposition

Under the previous hypotheses, for any positive constant c, with
probability at least 1− ε,

sup

{∫
Θ

[
M (θ)−m(θ)

]
dρ(θ);

ρ ∈M 1
+(Θ),θ 7→M (θ)−m(θ) ∈ L1(Θ),K (ρ,ν)≤ c

}
≤ inf
λ∈[0,Λ′[

λV (λ)
2

+ c + log(ε−1)
λn

≤

√√√√2
[
c + log(ε−1)

]
n

V

(√
2
[
c + log(ε−1)

]
nv

)
.
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PAC-Bayes bounds

In particular, when Θ is a finite set, with probability at least
1− ε

sup
θ∈Θ

[
M (θ)−m(θ)

]
≤

√√√√2log
(
|Θ|/ε

)
n

V

(√
2log

(
|Θ|/ε

)
nv

)
.

Proof.

This is a direct consequence of Equation (1) and of the

inequality ψ(λ,θ)≤ λ2V (λ)
2

+λm(θ).
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PAC-Bayes bounds

Let us assume that Θ =Bd =
{
θ ∈Rd ;‖θ‖ ≤ 1

}
and that there

exist two positive constants B and g such that

sup
x∈X

f (x ,θ)− inf
x∈X

f (x ,θ)≤ B , θ ∈Bd ,

|f (x ,θ)− f (x ,θ′)| ≤ g‖θ−θ′‖, x ∈X , θ,θ′ ∈Bd .

Let us consider the value of the parameter where the empirical
risk takes its minimum value

θ̂ ∈ arg min
θ∈Bd

M (θ).
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PAC-Bayes bounds

Proposition

With probability at least 1− ε,

m(θ̂)≤ inf
θ∈Bd

m(θ) + B


√

d

2n
log

(
1+ 4g

B

√
2n

d

)
+

log
(
2/ε
)

2n

+

√
d

8n
+

√
log
(
2/ε
)

2n

 .
Thus, the quality of the estimation depends on the ratio d/n.
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PAC-Bayes bounds

Proof. Let us put f (x ,θ) = f (x ,θ/‖θ‖), θ ∈Rd \Bd .
Let δ > 0 and ν the uniform measure on the ball (1 + δ)Bd of
radius 1+ δ.
For any θ ∈Bd , let ρθ be the uniform probability measure on
the ball θ+ δBd centered at θ and of radius δ.
As the volume of a ball in Rd is proportional to its radius raised
to the power d ,

K (ρθ,ν) = d log

(
1+ δ

δ

)
, θ ∈Bd .

From the previous proposition and Hoeffding’s inequality, with
probability at least 1− ε, for any θ ∈Bd ,

∫
m(θ′)dρθ(θ′)≤

∫
M (θ′)dρθ(θ′)+B

√
d log

(
1+ δ−1

)
+ log

(
ε−1
)

2n
.
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PAC-Bayes bounds

We deduce, still with probability at least 1− ε, that

m(θ̂)≤M (θ̂) +2gδ+ B

√
d log

(
1 + δ−1

)
+ log

(
ε−1
)

2n
.

Let θ∗ ∈ argminθ∈Bd
m(θ) (reached because Bd is compact).

With probability at least 1− ε, M (θ∗)≤m(θ∗) + B

√
log
(
ε−1
)

2n
.

By construction of θ̂, M (θ̂)≤M (θ∗). Consequently, with
probability at least 1−2ε,

m(θ̂)≤m(θ∗)+B

{√
d log(1 + δ−1) + log

(
ε−1
)

2n
+

√
log(ε−1)

2n

}
+2gδ.

To conclude, choose δ = B

4g

√
d

2n
and replace ε with ε/2.
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PAC-Bayes bounds

Let Θ =Rd . Assume that for some measurable function
(x ,θ) 7→ ∇f (x ,θ) ∈Rd , and some positive constants g and H ,
for any x ∈X and any θ,θ′ ∈Rd ,

|f (x ,θ)− f (x ,θ′)| ≤ g‖θ−θ′‖,

|f (x ,θ′)− f (x ,θ)−〈∇f (x ,θ),θ′−θ〉| ≤ H

2
‖θ′−θ‖2.

Let θ∗ ∈ arg min
θ∈Bd

m(θ), and consider, for any h > 0, the function

χ(h) = sup
θ∈Bd

h

2
‖θ−θ∗‖2−m(θ) + m(θ∗),
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PAC-Bayes bounds

Proposition

Under these hypotheses, the empirical minimizer,
θ̂ ∈ arg min

θ∈Bd

M (θ) of m on the unit ball is such that with

probability at least 1− ε

‖θ̂−θ∗‖2 ≤
8g2

nh2

[(
8H

h
+1

)
d +2log

(
ε−1
)]

+ 4χ(h)
h

and m(θ̂)−m(θ∗)≤
4g2

nh

[(
8H

h
+1

)
d +2log

(
ε−1
)]

+χ(h).

In the case when there is h > 0 such that χ(h) = 0, we thus get
a convergence speed of order d/n instead of

√
d/n, under

stronger hypotheses than in the previous proposition.
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PAC-Bayes bounds

Proof. Let ρθ = N (θ,β−1I ) and ν = ρθ∗ .

Let us remark that K (ρθ,ν) = β

2
‖θ−θ∗‖2.

Let us apply Equation (1) to the function
(x ,θ) 7→ f (x ,θ∗)− f (x ,θ). From Hoeffding’s inequality,

logEexp
{
λ
[
f (X ,θ∗)− f (X ,θ)

]}
−λ

[
m(θ∗)−m(θ)

]
≤ λ2g2‖θ−θ∗‖2

2
.

Consequently, with probability at least 1− ε, for any θ ∈Bd ,∫
m(θ′)dρθ(θ′)−m(θ∗)≤

∫
M (θ′)dρθ(θ′)−M (θ∗)

+ λg2

2

∫
‖θ′−θ∗‖2dρθ(θ′) + β‖θ−θ∗‖2

2nλ
+ log(ε−1)

nλ
.
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PAC-Bayes bounds

Moreover,∫
m(θ′)dρθ(θ′) = m(θ)

+E
[∫ [

f (X ,θ′)− f (X ,θ)−〈∇f (X ,θ),θ′−θ〉
]
dρθ(θ′)

≥m(θ)− H

2

∫
‖θ′−θ‖2dρθ(θ′) = m(θ)− Hd

2β
.

In the same way,

∫
M (θ′)dρθ(θ′)≤M (θ) + Hd

2β
.
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PAC-Bayes bounds

Thus with probability at least 1− ε, for any θ ∈Bd ,

m(θ)−m(θ∗)≤M (θ)−M (θ∗) + Hd

β
+ λg2d

2β
+ λg2

2
‖θ−θ∗‖2

+ β‖θ−θ∗‖2

2nλ
+

log
(
ε−1
)

nλ
.

We can then use the fact that m(θ)−m(θ∗)≥
h

2
‖θ−θ∗‖2−χ(h)

and that by construction M (θ̂)≤M (θ∗). We conclude that with
probability at least 1− ε

h

2
‖θ̂−θ∗‖2 ≤ χ(h) + d

β

(
H + λg2

2

)
+
(
λg2

2
+ β

2nλ

)
‖θ̂−θ∗‖2 +

log
(
ε−1
)

nλ
.
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Thus

‖θ̂−θ∗‖2
(

1− λg2

h
− β

nλh

)
≤ 2χ(h)

h
+ 2d

βh

(
H + λg2

2

)
+

2log
(
ε−1
)

hnλ
.

Let us then choose λ= h

4g2
and β = nλh

4
= nh2

16g2
. We get

1

2
‖θ̂−θ∗‖2 ≤

2χ(h)
h

+ 32g2d

nh3

(
H + h

8

)
+

8g2 log
(
ε−1
)

nh2
.

This gives the first upper bound of the proposition.
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To prove the second upper bound, let us use the fact that

‖θ̂−θ∗‖2 ≤
2

h

[
m(θ̂ )−m(θ∗) +χ(h)

]
, to obtain

m(θ̂ )−m(θ∗)≤
d

β

(
H + λg2

2

)
+
(
λg2

2
+ β

2nλ

)
2

h

[
m(θ̂ )−m(θ∗) +χ(h)

]
+

log
(
ε−1
)

nλ
.

We conclude in the same way, replacing λ and β by their values.
�
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Let W1:n ∈W n be an i.i.d. sample, on a measurable space W .
Let P⊗n ∈M 1

+
(
W n

)
be the distribution of W1:n .

Let Θ be a measurable parameter space, and L : W ×Θ→{0,1}
a binary measurable loss function.

Our aim will be to minimize the expected loss

∫
L(w ,θ)dP(w).

In the setting of supervised classification, W = X ×Y , where
X is a pattern space and Y a finite set of classes. Accordingly,
Wi = (Xi ,Yi) are input-output pairs.
We are given a family of measurable classification rules
{fθ : X → Y , θ ∈Θ}, and L is defined as
L
[
(x ,y),θ

]
= 1

(
fθ(x ) 6= y

)
, so that the loss∫

L(w ,θ)dP(w) = PX ,Y
(
fθ(X ) 6= Y

)
is equal to the expected

classification error.
The point of view exposed here is a synthesis of the approaches
of [9] and [2].
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For any λ ∈R, let Φλ(p) def= − 1

λ
log
[
1−p + p exp(−λ)

]
, and

K (q ,p) def= q log

(
q

p

)
+ (1− q) log

(
1− q

1−p

)
.

Let P= 1

n

n∑
i=1

δWi .

For any ρ,π ∈M 1
+(Θ) and any integrable function

f ∈ L1
(
W ×Θ2,P⊗π⊗ρ

)
, let

f (P,ρ,π) =
∫

f (w ,θ,θ′)dP(w)dρ(θ)dπ(θ′),

so that L(P,ρ) =
∫

L(w ,θ)dP(w)dρ(θ).
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For any probability measures π and ρ defined on the same
measurable space, such that K (ρ,π)<∞, and any bounded
measurable function h, let us define the transformed probability
measure πexp(h)� π by its density

dπexp(h)
dπ

= exp(h)
Z

,

where Z =
∫

exp(h)dπ. Let us moreover introduce the notation

Var
(
h dπ

)
=
∫ (

h−
∫

h dπ
)2

dπ.
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Proposition

The expectations with respect to ρ and π of h and the
log-Laplace transform of h are linked by the identities∫

h dρ−K (ρ,π) +K (ρ,πexp(h)) = log
[∫

exp(h)dπ
]

(2)

=
∫

h dπ+
∫ 1
0(1−α)Var

[
h dπexp(αh)

]
dα. (3)

Proof.

Equation (2) is a straightforward consequence of the definitions.
Equation (3) is the Taylor expansion of of the function
α 7→ log

[∫
exp(αh)dπ

]
.
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Let B+(q , δ) = inf
λ∈R+

Φ−1λ
(

q + δ

λ

)
= sup

{
p ∈ [0,1] : K (q ,p)≤ δ

}
, q ∈ [0,1], δ ∈R+,

and B−(q , δ) = inf
λ∈R+

Φ−λ(q) + δ

λ

= sup
{

p ∈ [0,1] : K (p,q)≤ δ
}
, q ∈ [0,1], δ ∈R+,
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Proposition

For any non random θ ∈Θ, with probability at least 1− ε,

L(P,θ)≤ B+
[
L(P,θ), log(ε−1)/n

]
,

Moreover

−δq ≤ B+(q , δ)− q−
√

2δq(1− q)≤ 2δ(1− q).

In the same way, with probability at least 1− ε

L(P,θ)≤ B−
[
L(P,θ), log(ε−1)/n

]
,

and
−δq ≤ B−(q , δ)− q−

√
2δq(1− q)≤ 2δ(1− q).
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Proof. From Chernoff’s bound, with probability at least 1− ε,

Φλ

[
L(P,θ)

]
− log(ε−1)

nλ
≤ L(P,θ),

Since the left-hand side is non-random, it can be optimized in
λ, giving

L(P,θ)≤ B+
[
L(P,θ), log(ε−1)/n

]
.

Since lim
λ→+∞

Φ−1λ
(

q + δ

λ

)
= lim
λ→+∞

1− exp(−λq− δ)
1− exp(−λ) ≤ 1,

B+(q , δ)≤ 1. Applying equation (2) to Bernoulli distributions
gives

λΦλ(p) = λq + K (q ,p)−K (q ,pλ)

where
pλ = p

p + (1−p)exp(λ) .
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This shows that

B+(q , δ) = sup
{

p ∈ [0,1] : Φλ(p)≤ q + δ

λ
, λ ∈R+

}
= sup

{
p ∈ [q ,1[ : K (q ,p)≤ δ+ K (q ,pλ),λ ∈R+

}
= sup

{
p ∈ [q ,1[ : K (q ,p)≤ δ

}
= sup

{
p ∈ [0,1] : K (q ,p)≤ δ

}
,

because when q ≤ p < 1 we can choose λ= log

(
q−1−1

p−1−1

)
∈R+,

for which q = pλ and therefore K (q ,pλ) = 0.
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Let us remark now that
∂2

∂x 2
K (x ,p) = x−1(1−x )−1. Thus if

p ≥ q ≥ 1/2, then

K (q ,p)≥ (p− q)2

2q(1− q) ,

so that if K (q ,p)≤ δ, then

p ≤ q +
√

2δq(1− q).

Now if q ≤ 1/2 and p ≥ q then

K (q ,p)≥


(p− q)2

2p(1−p) , p ≤ 1/2

2(p− q)2, p ≥ 1/2

≥ (p− q)2

2p(1− q) ,
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so that if K (q ,p)≤ δ, then

(p− q)2 ≤ 2δp(1− q),

implying that

p−q ≤ δ(1−q)+
√

2δq(1− q) + δ2(1− q)2≤
√

2δq(1− q)+2δ(1−q).

On the other hand,

K (q ,p)≤ (p− q)2

2min{q(1− q),p(1−p)} ≤
(p− q)2

2q(1−p) ,

thus when K (q ,p) = δ with p > q , then

(p− q)2 ≥ 2δq(1−p),

implying that

p− q ≥−δq +
√

2δq(1− q) + δ2q2 ≥
√

2δq(1− q)− δq .

Reverse inequalities are proved in the same way.
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Proposition

Given any set Λ⊂R+, let BΛ(q , δ) = inf
λ∈Λ

Φ−1λ
(

q + δ

λ

)
.

For any prior probability measure π ∈M 1
+(Θ) and any λ ∈R+,∫

exp

[
sup

ρ∈M 1
+(Θ)

nλ
{

Φλ

[
L(P,ρ)

]
−L(P,ρ)

}
−K (ρ,π)

]
dP⊗n ≤ 1,

(4)
and therefore for any finite set Λ⊂R+, with probability at least
1− ε, for any ρ ∈M 1

+(Θ),

L(P,ρ)≤ BΛ

(
L(P,ρ),

K (ρ,π) + log
(
|Λ|/ε

)
n

)
,
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Proof.

The exponential moment inequality (4) is a consequence of
Equation (2), showing that

exp

{
sup

ρ∈M 1
+(Θ)

nλ

∫ {
Φλ

[
L(P,θ)

]
−L(P,θ)

}
dρ(θ)−K (ρ,π)

}

≤
∫

exp

[
nλ
{

Φλ

[
L(P,θ)

]
−L(P,θ)

}]
dπ(θ),

and of the fact that Φλ is convex, showing that

Φλ

[
L(P,ρ)

]
≤
∫

Φλ

[
L(P,θ)

]
dρ(θ).

The deviation inequality follows as usual.
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Let us define the least increasing upper bound of the variance of
a Bernoulli distribution of parameter p ∈ [0,1] as

v(p) =
{

p(1−p), p ≤ 1/2,

1/4, otherwise.

Let us choose some positive integer parameter m and let us put

t = 1

4
log

(
n

8log
[
(m +1)/ε

]).
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Let us define

Bm
(
q ,e, ε

)
= max

{√
2v(q)

{
e + log

[
(m +1)/ε

]}
n

cosh
(
t/m

)
+

2(1− q)
{

e + log
[
(m +1)/ε

]}
n

cosh(t/m)2,

2
{

e + log
[
(m +1)/ε

]}
n

}

≤

√
2v(q)

{
e + log

[
(m +1)/ε

]}
n

cosh
(
t/m

)
+

2
{

e + log
[
(m +1)/ε

]}
n

cosh(t/m)2.
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Let us also consider

B(q ,e, ε) def=

√
2v(q)

{
e + log

[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]
+

2
{

e + log
[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]2
, (5)



Supervised classification 52/72

PAC-Bayes bounds

Proposition

With probability at least 1− ε, for any ρ ∈M 1
+(Θ),

L(P,ρ)≤ L(P,ρ) + Bm
[
L(P,ρ),K (ρ,π), ε

]
,

Moreover, as soon as n ≥ 5, Bblog(n)2c−1(q ,e, ε)≤ B(q ,e, ε), so
that with probability at least 1− ε, for any ρ ∈M 1

+(Θ),

L(P,ρ)≤ L(P,ρ)

+

√√√√2v
[
L(P,ρ)

]{
K (ρ,π) + log

[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]
+

2
{
K (ρ,π) + log

[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]2
.
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Let us put

q = L(P,ρ),

δ =
K (ρ,π) + log

[
(m +1)/ε

]
n

,

λmin =

√
8log

[
(m +1)/ε

]
n

,

Λ =
{
λ
1−k/m
min ,k = 0, . . . ,m

}
,

p = BΛ(q , δ) = inf
λ∈Λ

Φ−1λ
(

q + δ

λ

)
,

λ̂=
√

2δ

v(p) .
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According to equation (3) applied to Bernoulli distributions, for
any λ ∈ Λ,

Φλ(p) = p− 1

λ

∫ λ

0
(λ−α)pα(1−pα)dα≤ q + δ

λ
.

As moreover pα ≤ p,

p− q ≤ inf
λ∈Λ

λv(p)
2

+ δ

λ
= inf
λ∈Λ

√
2δv(p)cosh

[
log

(
λ̂

λ

)]
.

As v(p)≤ 1/4 and δ ≥
log
[
(m +1)/ε

]
n

,

√
2δ

v(p) = λ̂≥ λmin =

√
8log

[
(m +1)/ε

]
n

.
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Therefore either λmin ≤ λ̂≤ 1, or λ̂ > 1. Let us consider these
two cases separately.
If λmin = minΛ≤ λ̂≤maxΛ = 1, then log

(
λ̂
)

is at distance at
most t/m from some log

(
λ
)

where λ ∈ Λ, because log(Λ) is a
grid with constant steps of size 2t/m. Thus

p− q ≤
√

2δv(p)cosh
(
t/m

)
.

If moreover q ≤ 1/2, then v(p)≤ p(1− q), so that we obtain a
quadratic inequality in p, whose solution is less than

p ≤ q +
√

2δq(1− q)cosh
(
t/m

)
+2δ(1− q)cosh

(
t/m

)2
.

If on the contrary q ≥ 1/2, then v(p) = v(q) = 1/4 and

p ≤ q +
√

2δv(q)cosh
(
t/m

)
,
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so that in both cases

p− q ≤
√

2δv(q)cosh(t/m) +2δ(1− q)cosh
(
t/m

)2
. (6)

Let us consider now the case when λ̂ > 1. In this case v(p)< 2δ,
so that

p− q ≤ v(p)
2

+ δ ≤ 2δ.

In conclusion, applying Proposition 14 we see that with
probability at least 1− ε, for any posterior distribution ρ,

L(P,ρ)≤ p≤ q +max
{

2δ,
√

2δv(q)cosh
(
t/m

)
+2δ(1−q)cosh

(
t/m

)2}
,

which is precisely the statement to be proved.
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In the special case when m = blog(n)2c−1≥ log(n)2−2,

t

m
≤ 1

4
[
log(n)2−2

] log

(
n

8log
[
log(n)2−1

])≤ log(n)−1

as soon as the last inequality holds, that is as soon as
n ≥ exp(

√
2)' 4.11 to make log(n)2−2 positive and

3log(n)2−8 + log(n) log
{

8log
[
log(n)2−1

]}
≥ 0,

which holds true for any n ≥ 5, as can be checked numerically.
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Let W = X ×Y =Rd ×{−1,+1}, and
L(w ,θ) = L((x ,y),θ) = 1

[
〈θ,x 〉y ≤ 0

]
.

We will follow the approach presented in [5] and [8].

The bounds that does not depend on d can be generalized to
the case where the pattern space X is a Hilbert space of
infinite dimension. They apply to Support Vector Machines,
where we have an implicit mapping Ψ : X →H , into a Hilbert
space H , where Θ = H and where L(w ,θ) = 1

(
〈θ,Ψ(x )〉y ≤ 0

)
.
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Support Vector Machine algorithms are defined in terms of the
scalar product k(x1,x2) = 〈Ψ(x1),Ψ(x2)〉, defining a positive
symmetric kernel k on the original pattern space X . According
to the Moore-Aronszajn theorem, k may be any positive
symmetric kernel. Popular kernels on X =Rd are

k(x1,x2) =
(
1 + 〈x1,x2〉

)s
, for which dimH <∞,

k(x1,x2) = exp
(
−‖x1−x2‖2

)
, for which dimH = +∞.
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Let us consider, after [5, 8] as prior probability measure π the
centered Gaussian measure with covariance β−1 Id, so that

dπ

dθ
(θ) =

(
β

2π

)d/2

exp

(
−β‖θ‖

2

2

)
.

Let us also consider the function

ϕ(x ) = 1√
2π

∫ +∞

x
exp

(
−t2/2

)
dt , x ∈R

≤min
{ 1

x
√

2π
,
1

2

}
exp

(
−x 2

2

)
, x ∈R+.

Let πθ be the measure π shifted by θ, defined by the identity∫
h(θ′)dπθ(θ′) =

∫
h(θ+θ′)dπ(θ′).
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In this case

K (πθ,π) = β

2
‖θ‖2,

and
L(w ,πθ) = ϕ

[√
βy‖x‖−1〈θ,x 〉

]
.

To get an insight on L(w ,θ) itself, let us introduce the error
with margin

M (w ,θ) = 1
[
y‖x‖−1〈θ,x 〉 ≤ 1

]
.

The error with margin region is the complement of the open
cone

{
x ∈Rd ; y〈θ,x 〉> ‖x‖

}
.

Let us compute the randomized margin error

M (w ,πθ) = ϕ
{√

β
[
y‖x‖−1〈θ,x 〉−1

]}
.

It satisfies the inequality

M (w ,πθ)≥ ϕ(−
√
β
)
L(w ,θ) =

[
1−ϕ

(√
β
)]

L(w ,θ). (7)



Supervised classification 62/72

Linear binary classification

Proposition

With probability at least 1− ε, for any θ ∈Rd ,

L(P,θ)≤
[
1−ϕ(

√
β)
]−1

M (P,πθ)≤ C1(θ),

where

C1(θ) =
[
1−ϕ

(√
β
)]−1

B

(
M (P,πθ),

β‖θ‖2

2
, ε

)
,

the bound B being defined by equation (5).

Let θ̂ be any estimator satisfying

C1(θ̂)≤ inf
θ∈Rd

C1(θ) + ζ.
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For any fixed non random parameter θ?, C1(θ̂)≤ C1(θ?)+ ζ. On
the other hand, with probability at least 1− ε

M (P,πθ?)≤ B−

(
M (P,πθ?), log(ε−1)

n

)
, since∫

exp
{

nλ
[
M (P,πθ?)−Φ−λ

[
M (P,πθ?)

]}
dP⊗n

≤
∫

exp

{
nλ

∫ {
M (P,θ)−Φ−λ

[
M (P,θ)

}
dπθ?(θ)

}
dP⊗n ≤ 1,

the function p 7→ −Φ−λ(p) being convex.
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As a consequence

Proposition

With probability at least 1−2ε,

L(P, θ̂)≤

inf
θ?∈Θ

[
1−ϕ

(√
β
)]−1

B

(
B−

(
M (P,πθ?), log(ε−1)

n

)
,
β‖θ?‖2

2
, ε

)
+ζ.
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It is also possible to state a result in terms of empirical margins.
Indeed

M (w ,πθ)≤M (w ,θ/2) +ϕ(
√
β).

Thus with probability at least 1− ε, for any θ ∈Rd ,

L(P,θ)≤ C2(θ),

where

C2(θ) =
[
1−ϕ

(√
β
)]−1

B

(
M (P,θ/2) +ϕ

(√
β
)
,
β‖θ‖2

2
, ε

)
.
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The criterions C1 and C2 are non-convex, faster minimization
algorithms are available for the usual SVM loss function, that
we are going to study now.

Let us choose some positive radius R and let us put
‖x‖R = max

{
R,‖x‖

}
, so that in the case when ‖x‖ ≤ R,

‖x‖R = R.

M (w ,πθ) = ϕ
[√
β
(
y‖x‖−1〈θ,x 〉−1

)]
≤
(
2−y‖x‖−1R 〈θ,x 〉

)
+ +ϕ(

√
β). (8)

Using the upper bounds (8) and (7), and Proposition 14, we
obtain
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Proposition

With probability at least 1− ε, for any θ ∈Rd ,

L(P,θ)≤
[
1−ϕ

(√
β
)]−1

BΛ

(∫ (
2−y‖x‖−1R 〈θ,x 〉

)
+dP(x ,y)+ϕ(

√
β),

β‖θ‖2 +2log
(
|Λ|/ε

)
2n

)
=
[
1−ϕ

(√
β
)]−1

inf
λ∈Λ

Φ−1λ
[
C3(λ,θ) +ϕ

(√
β
)

+
log
(
|Λ|/ε

)
nλ

]
,

where

C3(λ,θ) =
∫ (

2−y‖x‖−1R 〈θ,x 〉
)
+ dP(x ,y) + β‖θ‖2

2nλ
.



Supervised classification 68/72

Support Vector Machines

Let us assume now that the patterns x are in a ball, so that
‖x‖ ≤ R almost surely.
In this case ‖x‖R = R almost surely.

Let us remark also that L(P,θ) = L(P,2R θ),

and that Φ−1λ (q) = 1− exp(−λq)
1− exp(−λ) ≤

q

1− λ
2

.
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Proposition

Let us assume that ‖x‖ ≤ R almost surely. With probability at
least 1− ε, for all θ ∈Rd ,

L(P,θ)≤ inf
β∈Ξ

[
1−ϕ(

√
β)
]−1

inf
λ∈Λ

Φ−1λ
[
2C4

(
β,λ,θ

)
+ϕ(

√
β) +

log
(
|Ξ| |Λ|/ε)
nλ

]
,

where

C4(β,λ,θ) = 1

2
C3(λ,2R θ) =

∫ (
1−y〈θ,x 〉

)
+ dP(x ,y)+ βR2‖θ‖2

nλ
,
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The loss function C4(λ,θ) is called the box constraint.

It is convex in θ. There are fast algorithms to compute
infθC4(λ,θ) for any fixed values of λ and β.

Here we get an empirical criterion which could be used to
optimize also the values of λ and β, that is to optimize the

strength of the regularizing factor
βR2‖θ‖2

nλ
.

In this reguralizing factor, ‖θ‖−1 plays the role of a margin
width, that is the minimal distance of x from the separating
hyperplane {x ′ : 〈θ,x ′〉= 0} beyond which the error term(
1−y〈θ,x 〉

)
+ vanishes .

The speed of convergence depends on R2‖θ‖2/n, where R2‖θ‖2,
plays the role of the dimension and is independent of d .
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Corollary

Assume that almost surely ‖x − c‖ ≤ R, for some c ∈Rd and
R ∈R+. With probability at least 1− ε, for any θ ∈Rd , any
γ ∈R such that min

i=1,...,n
〈θ,xi〉 ≤ γ ≤ max

i=1,...,n
〈θ,xi〉,

∫
1
[
y
(
〈θ,x 〉−γ

)
≤ 0

]
dP(x ,y)≤ inf

β∈Ξ

[
1−ϕ(

√
β)
]−1

inf
λ∈Λ

Φ−1λ
[
2C5(β,λ,θ,γ) +ϕ(

√
β) +

log
(
|Ξ| |Λ|/ε

)
nλ

]
,

where

C5(β,λ,θ,γ) =
∫ [

1−y
(
〈θ,x 〉−γ

)]
+ dP(x ,y) + 4βR2‖θ‖2

nλ
.



Supervised classification 72/72

Support Vector Machines

Proof.

Let us apply the previous result to x ′ = (x − c,R), and
θ′ =

[
θ,R−1

(
〈θ,c〉−γ

)]
.

We get that ‖x ′‖2 ≤ 2R2 and ‖θ′‖2 ≤ 2‖θ‖2, because almost
surely
−‖θ‖R ≤ ess inf〈θ,x − c〉 ≤ γ−〈θ,c〉 ≤ esssup〈θ,x − c〉 ≤ ‖θ‖R,
so that almost surely, for the allowed values of γ,(
〈θ,c〉−γ

)2 ≤ R2‖θ‖2.
This proves that C4(β,λ,θ′)≤ C5(β,λ,θ,γ), as required to
deduce the corollary from the previous proposition.
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