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The k-means criterion

Consider a random variable X ∈ H, where H is a separable Hilbert space and
the quantization problem

inf
c∈Hk

PX

(
min

j∈⟦1,k⟧
∥X − cj∥2

)
.

Given a sample X = (X1, . . . ,Xn) made of n independent copies of X, we want
an estimator ĉ(X) ∈ Hk such that

PX

(
min

j∈⟦1,k⟧
∥X − ĉj∥2

)
.

is small. Since it is a r. v. we can bound either its mean or its deviations. The
aim of this talk is to present a series of ideas that lead to new bounds and new
estimators.



A min-linear criterion

The first thing we propose is to rewrite the criterion as a min-linear problem.

min
j∈⟦1,k⟧

∥X − cj∥2 = min
j∈⟦1,k⟧

∥X∥2 + ∥cj∥2 − 2⟨X, cj⟩

= min
j∈⟦1,k⟧

∥W1∥2/4 + ⟨𝜃j,W⟩,

where 𝜃j =
(
cj, 𝛾

−1∥cj∥2) ,W = (−2X, 𝛾) ∈∈ H ×R and W1 = −2X ∈ H is the
first component of W.



A more general loss function
More generally we will consider a loss function

f (𝜃,w) ∈ R, 𝜃 ∈ Hm,w ∈ H,

such that��f (𝜃′,w) − f (𝜃,w)
�� ≤ (

a + b∥w∥𝛼2
)

max
j∈⟦1,k⟧

��� m∑︁
ℓ=1

Aj,ℓ
〈
𝜃′ℓ − 𝜃ℓ ,w

〉���𝛼1
,

𝛼1 ∈]0, 1], 𝛼2 ∈ R+,A ∈ Rk×m.

The minimization problem

inf
𝜃∈Θ

PW
[
f (𝜃,W)

]
covers in particular the case

inf
c∈Hk

PX

(
𝜇(X) min

j∈⟦1,k⟧
∥X − cj∥2𝛼1

)
, 𝛼1 ∈]0, 1], (1)

where 𝜇(X) ∈ [0, a′ + b′∥X∥𝛼2], a′, b′, 𝛼2 ∈ R+. (2)



Structured k-means
We use k centers depending on T parameters.

inf
𝜉 ∈Ξ

PX

(
𝜇(X) min

j∈⟦1,k⟧




X −
T∑︁

t=1
Bj,t𝜉t




2𝛼1 )
The (𝜃,W) parametrization is given by m = 2T + T (T − 1)/2,
W =

(
−2X, 𝛾

)
∈ H ×R, and for 1 ≤ t ≤ T , 1 ≤ s < T ,

Aj,t = Bj,t, 𝜃t = (𝜉t, 0),

Aj,T+t = B2
j,t, 𝜃T+j =

(
0, 𝛾−1∥𝜉t∥2

)
,

Aj,2T+t(t−1)/2+s−1 = 2Bj,tBj,s, 𝜃2T+t(t−1)/2+s−1 =

(
0, 𝛾−1⟨𝜉t, 𝜉s⟩

)
With this choice of coordinates


X −

T∑︁
t=1

Bj,t 𝜉t




2𝛼1
=

���∥W1∥2/4 +
〈 m∑︁
ℓ=1

Aj,ℓ 𝜃ℓ ,W
〉���𝛼1



Bound the excess risk

Consider a non random reference value of the parameter 𝜃★ and work on the
excess risk

h0(𝜃,w) = f (𝜃,w) − f (𝜃★,w).

Consider a statistical sample W = (W1, . . . ,Wn) made of n independent copies
of W ∈ H. From a bound in expectation

PW

[
sup
𝜃∈Θ

(
(PWh0) (𝜃) − B(𝜃,W)

)]
≤ 0 (3)

and the 𝜖-minimizer
B
(
𝜃̂,W

)
≤ inf

𝜃∈Θ
B
(
𝜃,W

)
+ 𝜖,

we get

PW

[
PW

[
f
(
𝜃̂,W

) ] ]
≤ inf

𝜃★∈Θ

[
PW

[
f (𝜃★,W)

]
+ PW

[
B
(
𝜃★,W

) ] ]
+ 𝜖 .

when the choice of 𝜃★ is optimal.



Deviation bounds

From a deviation bound

PW

[
sup
𝜃∈Θ

(
(PWh0) (𝜃) − B(𝜃,W) − log(𝛿−1)

)
≤ 0

]
≥ 1 − 𝛿. (4)

and the 𝜖-minimizer
B(𝜃̂,W) ≤ inf

𝜃∈Θ
B(𝜃,W) + 𝜖,

we get

PW

[
PW

[
f (𝜃̂,W)

]
≤ inf

𝜃★∈Θ
PW

[
f (𝜃★,W)

]
+ B

(
𝜃★,W

)
+ 𝜖

]
≥ 1 − 𝛿.

when 𝜃★ is optimal.



Deduce everything from exponential moments

We will deduce both bounds in expectation and deviation bounds from bounds
on exponential moments of the form

PW

{
exp

[
𝜆

(
sup
𝜃∈Θ

(PWh0) (𝜃) − B(𝜃,W)
)]}

≤ 1, (5)

where 𝜆 is a positive real exponent. This implies (3) and

PW

[
sup
𝜃∈Θ

(
(PWh0) (𝜃) − B(𝜃,W) − log(𝛿−1)/𝜆

)
≤ 0

]
≥ 1 − 𝛿. (6)



Lemma on the expectation of the supremum of Gaussian
random variables

Let 𝛼 be some positive real exponent, and let 𝜖j, 1 ≤ j ≤ k be k centered
Gaussian random variables with variances 𝜎2

j , 1 ≤ j ≤ k. We do not assume
independence nor the fact that the vector (𝜖1, . . . , 𝜖k) has a joint Gaussian
distribution. Let mj ∈ R, 1 ≤ j ≤ k be mean parameters. Assume that
k ≥ exp(𝛼 − 1).

P𝜖1,..., 𝜖k

(
max

j∈⟦1,k⟧

��mj + 𝜖j
��𝛼) ≤

(√︁
2 log(2k) max

j∈⟦1,k⟧
𝜎j + max

j∈⟦1,k⟧
|mj |

)𝛼
.



Gaussian perturbations

Assume w.l.o.g. that H = ℓ2.

Let 𝜌𝜃 ′ | 𝜃 =

m⊗
ℓ=1

(⊗
i∈N

N(𝜃ℓ, i, 𝜎
2
ℓ /𝛽)

)
: (RN)m → M1

+
(
(RN)m)

.

Let ⟨𝜃,w⟩ =


lim

s→+∞

s∑︁
i=0

𝜃iwi, when lim
s→+∞

s∑︁
i=0

𝜃iwi = lim
s→+∞

s∑︁
i=0

𝜃iwi ∈ R,

0, otherwise

be a non bilinear but measurable extension of the scalar product from ℓ2 to
RN.
The linear operator 𝜌 operates on suitably integrable functions of 𝜃 and w
according to the rule

(𝜌f ) (𝜃,w) = 𝜌𝜃 ′ | 𝜃
(
f (𝜃′,w)

)
.



PAC-Bayesian lemma

Consider the increasing function g(t) = 2
t2
[
exp(t) − 1 − t

]
, t ∈ R defined by

continuity at t = 0, where g(0) = 1. For any measurable bounded real valued
function h(w), w ∈ H, such that supw∈H |h(w) | ≤ 𝜂, for any positive exponent 𝜆,

PW

{
exp

[
n𝜆

(
PW − PW

)
h − n

𝜆2

2
g
(
2𝜂𝜆

)
PW

[ (
h − PWh

)2] ]} ≤ 1.

If h(𝜃,w) ∈ R, 𝜃 ∈ Hm,w ∈ H depends also on 𝜃 and if
sup𝜃∈Hm,w∈H

��h(𝜃,w)�� ≤ 𝜂,

PW

{
exp

[
sup

𝜌∈M1
+ (Θ)

n𝜆
(
PW − PW

)
𝜌h

− n
𝜆2

2
g
(
2𝜂𝜆

)
𝜌PW

[ (
h − PWh

)2] −K(𝜌, 𝜋)
]}

≤ 1.



Multi-scale decomposition of the excess risk

The decomposition

h0 =

(
I−𝜌 +

p∑︁
q=1

(
𝜌2q−1 − 𝜌2q ) + 𝜌2p

)
h0, (7)

can be written as

h0 = hp+1 +
p∑︁

q=0

(
hq − hq+1

)
, (8)

where

h0(𝜃,w) = f (𝜃,w) − f (𝜃★,w), 𝜃 ∈ Hm,w ∈ H,

( with implicit dependence on 𝜃★),

hq = 𝜌2q−1
h0 = 𝜌

(
2−q+1𝛽

)
h0, 1 ≤ q ≤ p + 1.



Thresholds
We will also need a sequence of truncation operators Tq using threshold levels
𝜂q > 0. They are defined as

Tq(z) = min{𝜂q, z}, z ∈ R+,

Tq(w) = Tq(∥w∥) w
∥w∥ , w ∈ H,

(Tqf ) (𝜃,w) = f
(
𝜃, Tq(w)

)
, 𝜃 ∈ Hm,w ∈ H,

and the operator Tqf acting on functions is linear ( although the truncation
acting on vectors or positive real numbers is not ). Moreover, Tq commutes
with 𝜌 :

Tq𝜌 = 𝜌Tq.

We also have the composition rules

PW𝜌 = 𝜌PW , and PWTq = PTq (W ) .

At stage p + 1, we will need the non linear threshold operator Tp+1 defined as(
Tp+1h

)
(𝜃,w) = min

{
𝜂p+1,max

{
−𝜂p+1, h(𝜃,w)

}}
,



Bounding the expected excess risk

We will prove a bound that compares the expected excess risk PWh0 with the
possibly truncated empirical excess risk PWT0h0. We decompose the risk into

PWh0 = PW
(
I−T0

)
h0 +

(
PW − PW

)
T0h0 + PWT0h0,

leading to

PWh0 = PW
(
I−T0

)
h0 +

(
PW − PW

)
T0

(
hp+1 +

p∑︁
q=0

(
hq − hq+1

) )
+ PWT0h0. (9)

We will analyze each term of this decomposition separately.



Bounding Aq,0 =
(
PW − PW

)
T0

(
hq − hq+1

)
Let us deal first with the case when q ≥ 1. Decompose further Aq,0 into

Aq,0 = Aq,1 + Aq,2,

where

Aq,1 =
(
PW − PW

)
T0(I−Tq)

(
hq − hq+1

)
Aq,2 =

(
PW − PW

)
Tq

(
hq − hq+1

)
.

As hq = 𝜌qh0,
hq − hq+1 = 𝜌q(I−𝜌q)h0 = 𝜌q(I−𝜌q)f ,

since h0(𝜃,w) = f (𝜃,w) − f (𝜃★,w), where f (𝜃★,w) does not depend on 𝜃. Thus

Aq,2 =
(
PW − PW

)
𝜌q(I−𝜌q)Tqf .



Moreover��(I−𝜌q)Tqf
�� = ��𝜌(𝛽q)𝜃 ′ | 𝜃

[
f (𝜃, Tq(w)) − f (𝜃′, Tq(w))

] ��
≤ 𝜌(𝛽q)𝜃 ′ | 𝜃

[��f (𝜃, Tq(w)) − f (𝜃′, Tq(w))
��] ,

so that��(I−𝜌q)Tqf
��

≤
(
a + bTq(∥w∥)𝛼2

)
𝜌(𝛽q)𝜃 ′ | 𝜃

(
max

j∈⟦1,k⟧

��〈Tq(w),
m∑︁
ℓ=1

Aj,ℓ
(
𝜃ℓ − 𝜃′ℓ

)〉��𝛼1

)
≤

(
a + bTq(∥w∥)𝛼2

) (√︁
2 log(2k)/𝛽𝜎★Tq(∥w∥)

)𝛼1 ,

where

𝜎★ = max
j∈⟦1,k⟧

√√ m∑︁
ℓ=1

A2
j,ℓ𝜎

2
ℓ
.



Introduce the bounds
Bq,0(w) = Bq,1(∥w∥)

where

Bq,1(t) =
(
a + bt𝛼2

) (
2 log(2k)/𝛽q

)𝛼1/2 (𝜎★t
)𝛼1 , t ∈ R+.

We get ��(I−𝜌q)Tqf
�� ≤ TqBq,0.

Let us put

Kq(𝜃) =
m∑︁
ℓ=1

𝛽q

2𝜎2
ℓ

∥𝜃ℓ − 𝜃̃ℓ ∥2 = K
(
𝜌(𝛽q)𝜃 ′ | 𝜃 , 𝜌(𝛽q)𝜃 ′ | 𝜃=𝜃

)
, 𝜃 ∈ Hm,

where 𝜃̃ ∈ Hm is a non random reference that may or may not be equal to 𝜃★.
For any 𝜆q > 0,

PW

{
exp

[
sup
𝜃∈Θ

n𝜆Aq,2 − n
𝜆2

2
g
(
2𝜆Bq,1(𝜂q)

)
PW

(
Bq,0(W)2) − Kq(𝜃)

]}
≤ 1.



Let us now bound

Aq,1 =
(
PW − PW

)
T0(I−Tq)𝜌q(I−𝜌q)f .

We can write

|Aq,1 | ≤
(
PW + PW

)
T0(I+Tq)

[
1
(
∥W ∥ ≥ 𝜂q

)
𝜌q

��(I−𝜌q)f
��]

≤ 2
(
PW + PW

)
T0

[
1
(
∥W ∥ ≥ 𝜂q

)
Bq,0

]
≤ 2

(
PW + PW

) [
T0B2

q,0/Bq,1(𝜂q)
]
.



Bounding A0,0

In the case when q = 0,

A0,0 =
(
PW − PW

)
T0(I−𝜌)f ,

so that ��A0,0
�� ≤ (

PW + PW
)
T0

��(I−𝜌)f �� ≤ (
PW + PW

)
T0B1,0.



Let us now come to
A−1,0 = PW (I−T0)h0.

Remark that ��h0(𝜃,w)
�� ≤ B−1,0(𝜃,w),

where
B−1,0(𝜃,w) = B−1,1(𝜃, ∥w∥),

where

B−1,1(𝜃, t) =
(
a + bt𝛼2

) (
t max

j∈⟦1,k⟧




 m∑︁
ℓ=1

Aj,ℓ
(
𝜃ℓ − 𝜃★ℓ

)


)𝛼1

is not decreasing in t ∈ R+. Therefore,��A−1,0
�� = ��PW (I−T0)h0

�� ≤ PW
(��(I−T0)h0

��)
= PW

(��(I−T0)
[
1
(
∥w∥ ≥ 𝜂0

)
h0

] ��)
≤ PW

(
(I+T0)

[
1
(
∥w∥ ≥ 𝜂0

)
|h0 |

] )
≤ PW

(
(I+T0)

[
1
(
∥w∥ ≥ 𝜂0

)
B−1,0

] )
≤ 2PW

( [
1
(
∥w∥ ≥ 𝜂0

)
B−1,0

] )
≤ 2PW

(
B−1,0(𝜃,W)2/B−1,1(𝜃, 𝜂0)

)
.



Finally, let us bound

Ap+1,3 =
(
PW − PW

)
T0hp+1 =

(
PW − PW

)
𝜌p+1T0h0.

Introduce the non linear threshold operator Tp+1 defined by the equation(
Tp+1h

)
(𝜃,w) = min

{
𝜂p+1,max

{
−𝜂p+1, h(𝜃,w)

}}
,

where 𝜂p+1 > 0 is some threshold level. We can decompose Ap+1,3 into

Ap+1,3 = Ap+1,4 + Ap+1,5,

where
Ap+1,4 =

(
PW − PW

)
𝜌p+1Tp+1T0h0

and
Ap+1,5 =

(
PW − PW

)
𝜌p+1(I−Tp+1)T0h0.



Remark first that��Ap+1,5
�� ≤ (

PW + PW
)
𝜌p+1

��(I−Tp+1)T0h0
��

=
(
PW + PW

)
𝜌p+1

[ (
|T0h0 | − 𝜂p+1

)
+
]

≤
(
PW + PW

)
𝜌p+1

[
1
(
|T0h0 | ≥ 𝜂p+1

)
|T0h0 |

]
≤ 1

𝜂p+1

(
PW + PW

)
𝜌p+1

(
|T0h0 |2

)
.

Define f★(𝜃,w) = f (𝜃★,w) depending on w only. Remark that

𝜌p+1
[
|T0h0 |2

]
= T0𝜌p+1

[
(f − f★)2]

≤ T0𝜌p+1

[ (
a + b∥w∥𝛼2

)2 ( max
j∈⟦1,k⟧

��〈w, m∑︁
ℓ=1

Aj,ℓ
(
𝜃ℓ − 𝜃★ℓ

)〉��)2𝛼1
]

≤ T0
(
a+b∥w∥𝛼2

)2
( (

2 log(2k)/𝛽p+1
)1/2

𝜎★∥w∥+ max
j∈⟦1,k⟧

��〈w, m∑︁
ℓ=1

Aj,ℓ
(
𝜃ℓ−𝜃★ℓ

)〉��)2𝛼1

≤ T0Bp+1,0,



where

Bp+1,0(𝜃,w) =
(
a + b∥w∥𝛼2

)2∥w∥2𝛼1

×
( (

2 log(2k)/𝛽p+1
)1/2

𝜎★ + max
j∈⟦1,k⟧




 m∑︁
ℓ=1

Aj,ℓ
(
𝜃ℓ − 𝜃★ℓ

)


)2𝛼1
.

Therefore ��Ap+1,5
�� ≤ (

PW + PW
) (

T0Bp+1,0/𝜂p+1
)
.



Low frequency component

The last term to bound is Ap+1,4. We get for any 𝜆p+1 > 0

PW

{
exp

[
sup
𝜃∈Θ

n𝜆p+1Ap+1,4−n
𝜆2

p+1

2
g
(
2𝜆p+1𝜂p+1

)
PW𝜌p+1

(
(T0h0)2)−Kp+1(𝜃)

]}
≤ 1,

so that

PW

{
exp

[
sup
𝜃∈Θ

(
n𝜆p+1Ap+1,4−n

𝜆2
p+1

2
g
(
2𝜆p+1𝜂p+1

)
PW

(
T0Bp+1,0

)
−Kp+1(𝜃)

)]}
≤ 1.



Summary

We have written

PWh0 = PWT0h0 + A−1,0 + A0,0 + Ap+1,4 + Ap+1,5 +
p∑︁

q=1

(
Aq,1 + Aq,2

)
and provided bounds for each Aq,ℓ , either almost sure bounds or exponential
moment bounds.



Based on the bounds

Bq,0(w) = Bq,1(∥w∥)

where Bq,1(t) =
(
a + bt𝛼2

) (
2 log(2k)/𝛽q

)𝛼1/2 (𝜎★t
)𝛼1 , t ∈ R+

Bq,0(w) = 𝜉 (∥w∥)S𝛼1
3 𝛽

−𝛼1/2
q ,

B−1,0(𝜃,w) =
(
a + b∥w∥𝛼2

) (
∥w∥ max

j∈⟦1,k⟧




 m∑︁
ℓ=1

Aj,ℓ
(
𝜃ℓ − 𝜃★ℓ

)


)𝛼1

= 𝜉 (∥w∥)S𝛼1
2 ,

Bp+1,0(𝜃,w) =
(
a + b∥w∥𝛼2

)2∥w∥2𝛼1

×
( (

2 log(2k)/𝛽p+1
)1/2

𝜎★ + max
j∈⟦1,k⟧




 m∑︁
ℓ=1

Aj,ℓ
(
𝜃ℓ − 𝜃★ℓ

)


)2𝛼1
,

= 𝜉 (∥w∥)2
(
S3𝛽

−1/2
p+1 + S2

)2𝛼1

and Kq(𝜃) =
m∑︁
ℓ=1

𝛽q

2𝜎2
ℓ

∥𝜃ℓ − 𝜃̃ℓ ∥2,



What we proved

We proved that

PW

{
exp

[
sup
𝜃∈Θ

n𝜆Aq,2 − n
𝜆2

2
g
(
2𝜆Bq,1(𝜂q)

)
PW

(
Bq,0(W)2) − Kq(𝜃)

]}
≤ 1,

PW

{
exp

[
sup
𝜃∈Θ

(
n𝜆Ap+1,4 − n

𝜆2

2
g
(
2𝜆𝜂p+1

)
PW

(
T0Bp+1,0

)
− Kp+1(𝜃)

)]}
≤ 1.

We also bounded the remaining terms by

|Aq,1 | ≤ 2
(
PW + PW

)
T0

[
1(∥W ∥ ≥ 𝜂q

)
Bq,0

]
≤ 2

(
PW + PW

) [
T0Bq,0(W)2/Bq,1(𝜂q)

]��A0,0
�� ≤ (

PW + PW
)
T0B1,0.��A−1,0

�� ≤ 2PW

(
B−1,0(𝜃,W)2/B−1,1(𝜃, 𝜂0)

)
,��Ap+1,5

�� ≤ (
PW + PW

) (
T0Bp+1,0/𝜂p+1

)



Bound in expectation
Assume that n ≥ 2S1 and set 𝜂0 = +∞. We get
PW

{
sup
𝜃∈Θ

PWh0 − PWh0 − 𝛾

}
≤ 0, where

𝛾 = 2
[(g(1)

2
+ 8

)1/2
PW

(
𝜉 (∥W ∥)2)1/2 + PW

(
𝜉 (∥W ∥)

) ]
× S

𝛼1
3

(
log(2n/S1)

log(2)

)𝛼1 (S1
n

)𝛼1/2

+ 2
[(g(1)

2
+ 4

)
PW

(
𝜉 (∥W ∥)2) (S3 + S2

)2𝛼1 S1
n

]1/2

and 𝜉 (t) =
(
a + bt𝛼2

)
t𝛼1 , S1 = sup

𝜃∈Θ

m∑︁
ℓ=1

∥𝜃ℓ − 𝜃̃ℓ ∥2

2𝜎2
ℓ

S2 = sup
𝜃∈Θ

max
j∈⟦1,k⟧




 m∑︁
ℓ=1

Aj,ℓ (𝜃ℓ − 𝜃★ℓ
)




and S3 =
(
2 log(2k)

)1/2 max
j∈⟦1,k⟧

√√ m∑︁
ℓ=1

A2
j,ℓ𝜎

2
ℓ
.



Proposition

With the above definitions, consider an 𝜖-minimizer of the empirical risk
𝜃̂ (W) ∈ Θ, that is an estimator satisfying PW almost surely

P
(
f (𝜃̂,W)

)
≤ inf

𝜃∈Θ
P

(
f (𝜃,W)

)
+ 𝜖 .

Its mean excess risk satisfies

PW
[
P

(
f (𝜃̂,W)

) ]
≤ inf

𝜃∈Θ
P

(
f (𝜃,W)

)
+ 𝛾 + 𝜖 .



Deviation bounds
Introduce the increasing function

g̃(t) = 1
t
[
exp(t) − 1

]
.

Remark that with probability at least 1 − 𝛿

PW
(
𝜉 (∥T0(W)∥)2) ≤ g̃

(
𝜆0𝜉 (𝜂0)2)P(

𝜉 (∥W ∥)2) + log(𝛿−1)
n𝜆0

Take
𝜆0 = 𝜉 (𝜂0)−2,

and choose 𝜂0 such that

log(2/𝛿)
n

𝜉 (𝜂0)2 = g̃(1)P
(
𝜉 (W)2) ,

so that with probability at least 1 − 𝛿/2

PW
(
𝜉 (∥T0(W)∥)2) ≤ 2̃g(1)P

(
𝜉 (∥W ∥)2) .



Choosing thresholds

Choose as previously 𝜂q and 𝜂p+1 such that

Bq,1(𝜂q) =
1

2𝜆q
and 𝜂p+1 =

1
2𝜆p+1

.

We get with probability at least 1 − 𝛿/2

|Aq,1 | ≤ 4(1 + 2̃g(1))𝜆qPW
[
T0Bq,0(W)2] ,

|A0,0 | ≤
(
1 +

√︁
2̃g(1)

)
PW

(
B2

1,0
)1/2

,��A−1,0
�� ≤ 2PW

(
B2
−1,0/B−1,1(𝜂0)

)
,

|Ap+1,5 | ≤ 2
(
1 + 2̃g(1)

)
𝜆p+1PW

(
T0Bp+1,0

)
.



PAC-Bayesian inequality

We also have

PW

{
exp

[
n𝜆 sup

𝜃∈Θ

p∑︁
q=1

Aq,2 −
𝜆q

2
g(1)PW

(
B2

q,0
)
−

𝛽qS1

n𝜆q

+ Ap+1,4 −
𝜆p+1

2
g(1)PW

(
Bp+1,0

)
−

𝛽p+1S1

n𝜆p+1

]}
≤ 1,

where
1
𝜆
=

1
𝜆p+1

+
p∑︁

q=1

1
𝜆q

.



Proposition
Assume that P

[
𝜉
(
∥W ∥

)2]1/2 ≤ B, where B is known and that n ≥ 2S1.
Consider the threshold 𝜂0 such that

log(2/𝛿)
n

𝜉 (𝜂0)2 = (e − 1)B.

Let 𝜃̂ ∈ Θ, be such that

PW
(
f (𝜃̂, T0W)

)
≤ inf

𝜃∈Θ
P

(
f (𝜃, T0W)

)
+ 𝜖 .

With probability at least 1 − 𝛿, its excess risk is such that

PW
(
f (𝜃̂,W)

)
≤ inf

𝜃∈Θ
PW

(
f (𝜃,W)

)
+ B𝛾 + 𝜖

where 𝛾 = 12 p𝛼1S
𝛼1
3

(
S1/n

)𝛼1/2 + 7
(
S3 + S2/p

)𝛼1p−(1−𝛼1 ) (S1/n
)1/2

+
[
(9(2𝛼1/2 − 1)−1 + 7)S𝛼1

3 p𝛼1 + 12 S𝛼1
2

] (
log(2/𝛿)/n

)1/2

= O
(
log

(
n/S1

)𝛼1 (S1/n
)𝛼1/2

)
, with p =

⌈
log

(
n/S1

)
/log(2)

⌉
.


