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The k-means criterion

Consider a random variable X € H, where H is a separable Hilbert space and
the quantization problem

inf IPX( min ||X—cj||2).
ceH* jelL.k]

Given a sample_? = (X1, ..., X,) made of n independent copies of X, we want
an estimator ¢(X) € H* such that

]PX( min || X —'c}||2).
Jel k]

is small. Since itis ar. v. we can bound either its mean or its deviations. The
aim of this talk is to present a series of ideas that lead to new bounds and new
estimators.



A min-linear criterion

The first thing we propose is to rewrite the criterion as a min-linear problem.

min || X = ¢;||> = min ||X]|* +||c; 2—2X,c~
min IX = g = min IXIP + 11 ~ 20 ;)

= min ||Wy|*/4 +(6;, W),
jeli

where 60, = (cj,y_1||cj||2), W= (-2X,y) ee HxXx R and W; = -2X € H is the
first component of W.



A more general loss function

More generally we will consider a loss function
fO,w)yeR, OeH" weH,

such that

m
@
[F(6',w) = f(6,w)| < (a+bllwl|*?) max ‘ZAM(H; - 05,w>’ ,
Jelt e
a; €]0,1], @2 € Ry, A € R,
The minimization problem
inf IP 0,
inf Pl (6. W]
covers in particular the case
inf Py (u(X) min X - giI*),  a €]0,1], 1
inf Py(u) min X o 1 €10.1] 1)

where u(X) € [0,a’ +D'||X]||**], d',b',as € R,4. )



Structured k-means

We use k centers depending on T parameters.

2(11)

The (6, W) parametrization is given by m = 2T + T(T — 1)/2,
W= (-2X,y) e HxR,andfor1 <t <T,1 <s<T,

T
inf Py( 1(X) mi “X— B:
inf, x(u( )jer[r[lll,r}(]] ; it

Aj’t = ijt’ 9[ = (é:ta 0)7
_ 2 _ e 2
Ajr+ = Bj s Or4j = (0, Y& ),
AjoTi(1-1) /2451 = 2B; 1Bj s, O2741(1-1) J245-1 = (0,7_1(§z,§s>)

With this choice of coordinates

T
- > Be
=1

2 m
[ = waizra s (3 a0, W)™
=1



Bound the excess risk

Consider a non random reference value of the parameter 6* and work on the
excess risk

hO(e’ W) :f(es W) _f(e*’ W)

Consider a statistical sample W = (W, ..., W,) made of n independent copies
of W € H. From a bound in expectation

]PW[ sup ((IPWho)(e) - B(H,W))] <0 3)

and the e-minimizer

B(6,W) < érelgB(H, W) +e,

we get
Py | Pwlr(@.w)]] < inf [Pulror, w] + Py[Be* W)]| +e.

when the choice of 6* is optimal.



Deviation bounds

From a deviation bound
]PW[ sup ((]Pwho)(e) _B(0,W) - 1og(5—1)) < 0] >1-6. )
€

and the e-minimizer
B8, W) < gngB(H, W) + €,
€

we get

]PW[]PW[f(é‘, W) < inf Pylf(6*, W)] +B(6*. W) + e] >1-6.

when 6* is optimal.



Deduce everything from exponential moments

We will deduce both bounds in expectation and deviation bounds from bounds
on exponential moments of the form

Py {exp|( sup (Pyyho) (8) ~ B(®, W)} <1, (5)

where A is a positive real exponent. This implies (3) and

P—[sup((lPWho)(a) — B(6,W) —log(é_l)//l) < o] >1-6.  (6)
W 0e®



Lemma on the expectation of the supremum of Gaussian

random variables

Let a be some positive real exponent, and let €;, 1 < j < k be k centered
Gaussian random variables with variances o2, 1 < j < k. We do not assume
independence nor the fact that the vector (ey, ..., €) has a joint Gaussian
distribution. Let m; € R, 1 < j < k be mean parameters. Assume that

k > exp(a —1).

(04
Pe,... fk( max |mj+ej|a) < (\/210g(2k) .nE[lax 0j+ max |mj|)
Jjellt,

jel 1.k] 1k] jelL.k]



Gaussian perturbations

o Assume w.l.o.g. that H = >,

o Letpgr(g = ®(® N(be, . 3//3)) (RN - ML(RN)™).

(=1 \ielN
S N
lim 0;w;, when lim Oiw; = lim Z Ow; € R,
° Let <9, W> = s+ i=0 sTteo i=0 §—+00 i=0
0, otherwise

be a non bilinear but measurable extension of the scalar product from £ to
RN,

@ The linear operator p operates on suitably integrable functions of 8 and w
according to the rule

(pf)(0,w) = por o (f(0',w)).



PAC-Bayesian lemma

Consider the increasing function g(¢) = t%[exp(t) -1- t], t € R defined by
continuity at # = 0, where g(0) = 1. For any measurable bounded real valued
function A(w), w € H, such that sup, .5 |h(w)| < n, for any positive exponent A,

IPW{eXp[n/l(FW —Py)h - n%zg(Zn/l)IPW[(h - IPWh)Z] ” <1.

If h(0,w) € R, 8 € H",w € H depends also on 6 and if
SupaeH’",weH|h(9’W)| < ,

Pw{exp[ sup n/l(ﬁw - Py)ph
peMl(©)
A2 5
—n=-8(2n0) pPw | (h = Pwh)"] - K(p, ﬂ)]} <1.



Multi-scale decomposition of the excess risk

The decomposition
ho_(I p+Z )+p )ho, 7

can be written as

ho = hp1 + Z hys1)s 3)
where

ho(8,w) =f(0,w) —f(6*,w), 6€H" weH,
( with implicit dependence on 6*),

hg=p> ho=p(2 "' B)hy, 1<qg<p+l.



Thresholds

We will also need a sequence of truncation operators T, using threshold levels
ng > 0. They are defined as

Tq(Z) = min{nq, 7z}, ze€Ry,
T,(w) = Tq<||w||>ﬁ
(T,f)(8,w) =f(6,T,(w)), 6€H" weH,

and the operator T,f acting on functions is linear ( although the truncation
acting on vectors or positive real numbers is not ). Moreover, T,, commutes
with p :

, WEH,

T,p = pTy.
We also have the composition rules

IPwp = plpw, and IPwT = IPTq(W)-

At stage p + 1, we will need the non linear threshold operator 7}, defined as

(Tps1h) (0, w) = min{np+1, max{—np+1, h(8, w)}},



Bounding the expected excess risk

We will prove a bound that compares the expected excess risk Pyho with the
possibly truncated empirical excess risk Py Tphg. We decompose the risk into

IPwh() = IPw(I —To)ho + (IPW - Fw)Toho + FwTQho,

leading to

P
Pyho = Py (1=To)ho + (Pw = Pw)To [yt + Y (g = hgs) ) + PwToho. (9)
q=0

We will analyze each term of this decomposition separately.



Bounding A, o = (Pw — Pw)To(hy — hgs1)

Let us deal first with the case when ¢ > 1. Decompose further A, o into
Aq,O = Aq,l +Aq,2,
where

Ag1 = (Pw = Pw)To(1=T,) (hy — hgs1)
Ago = (]PW - FW) q(hq - hq+1)~

As hy = pgho,
hg — hgr1 = pg(1=pg)ho = pa(L1=py)f,

since ho (6, w) = f(0,w) —f(6*,w), where f(6*, w) does not depend on 6. Thus

Agn = (Pw = Pw)pg(I-py) Tof -



Moreover

|T=p)Tof | = [0(Bor [ (0, Ty(w)) = (O, Ty(w))]]
< p(Byeor o [lf (0. T;(w)) —£(6", T,(w))|].

so that
|(I _pq)qu|
< (a+bT,(Iwl)™)p(Ber | gcgﬁiﬂlﬁﬂw),gfxﬂg(ag - 92)>I”‘)
< (a+bT,(Iwl) ) (V21og(2k) /Bos Ty (IIwl)) ™',
where
St R DI

=1



Introduce the bounds
Bgo(w) = By 1(|[wll)

where
By1 (1) = (a+bt) (210g(2k) /B,) ™ * (o) ™', 1€ R,
We get
|(1-py)Tof| < T,By 0.
Let us put

Kq(9) :Z & =110 = 0e11* = K(p(Byor 10> 0 (B g 6-5)> 0 € H”,

m
=1 O-

4

where § € H™ is a non random reference that may or may not be equal to 6*.
For any 4, > 0,

/12
IPW{exp[ sup niAg )~ 1 8(24B4.1 (1)) Py (Bo.o(W)?) - Kq(H)” <1
€



Let us now bound

Agr = (Py = Py) To(1-T,) pg(I-p,)f -
We can write
Agil < (Pw +Pyw) To(T+To) [L (W = ng) pg| T=pg)f]]

< 2(Pw + Pw) To[1(IWI| = 14)By,0]
< 2(]PW + FW) [TOBg,o/Bq,l (nq)]-



Bounding Ag

In the case when g = 0,
Ao = (Pw = Pw) To(I-p)f,

so that . .
|A0,()| < (IPW + IPw)T0|(I —p)f| < (IPW + IPw)T()B],().



Let us now come to
A_1 o =Pw(I-To)ho.

Remark that
|ho(8,w)| < B_1 (6, w),
where
B_1,0(6,w) = B_1,1(6, [[wl]),
where

B_11(0,1) = (a+br*) (t}gffuz]]“ZAjf

is not decreasing in ¢ € R... Therefore,

)"

|AZ 10| = [Pw(I=To)ho| < Pw (|(1-To)ho|)
= Py (|(T-To) [L(IIwll = n0)ho]])
< Py ((I+To) [L(IIwll > 70)lhol])
< Py ((T+To) [1(|lwll = 170)B-1,0])
< 2Pw([L(lwll = no)B-1,0])

< 2Py (B-1.0(6. W) /B-1.1(6.10)).



Finally, let us bound
Ap+1’3 = (]PW - FW)TOh[Hl = (]PW - Fw)pp.'.]T()ho.

Introduce the non linear threshold operator 7),4; defined by the equation

(Tp+1 h) (0’ W) = min{npﬂ H maX{_an s h(e’ W)}}a
where 17,41 > 0 is some threshold level. We can decompose A, 3 into

Api13 =Api1a+Aps1 5,

where .
Api14 = (Pw = Pw) ppe1 Tp1 Toho

and .
Ap15 = (Pw = Pw) ppe1 1=Tpe1) Toho.



Remark first that

|Aps1.5] < (Pw +Pw) pprt [(1=Tpe1) Toho|
= (Pw + Pw) pps1 [ (1Tohol = mps1), ]
< (Pw + Pw)pps1 []l(ITohol > np+1) [ Tohol |

(Pw +Pw) pps1 (ITohol?).

B 77p+1

Define f* (0, w) = f(6*,w) depending on w only. Remark that

ppe1 [ITohol*] = Toppu [(f = £*)?]

< Toppar|(a+ blwll ) max [(w ZAM ]
2a
< To(a+bllwl|)*( (210g(20)/Bpe1) 2 Talwlke ma I ZAJ€9€ )

< ToBp+1,0



where
Bpa1.0(0,w) = (a+b|jw|| @) ||

((210g(2k)/ﬁp+1 20*+ max HZA,g )H)Zm‘

JE[1.K]

Therefore .
|Ap+l,5| < (Pw + Pw) (ToBp+1,0/mp+1)-



Low frequency component

The last term to bound is A1 4. We get for any 4,41 > 0

/12
Py {CXP[SUP NAps1Aps1 4—N—— (2/1p+177p+1)1PWPp+1((T0h0) )— p+1(9)” <1

so that
/12

Pw{exp[zgg(nﬂpw‘\mm n—- g(2/lp+177p+1)]PW(To +1,0)—Kp+1(9))” <1



We have written
. P
IPwhO = IP‘/VT()hO +A_1’0 +A0’0 +Ap+1,4 +AP+1’5 + Z(Aq’l +Aq’2)
g=1

and provided bounds for each A, ¢, either almost sure bounds or exponential
moment bounds.



Based on the bounds

By0(w) = Bg1([lwl)
where B, 1 () = (a+bt*) (210g(2k) /B,) "> (out) ™, te R,

Bgo(w) = £(IlwlD8 B, /2,

B0(6.w) = (a+ Bl () max |3 A 6 - 67)
JelL.A =

=£&(lwlDsy",

2
Bpi1,0(8,w) = (a+blwl| ) [[w]]>™

2(1’1
o))

((2 10g(2k)/,8p+1 Po, +]€n[EaX]]||ZAJ ¢

2a

= £(Iwl?(838,,1° + 82)

m
and K,(0) = Z 5 116e — Ocll?,
= 207



What we proved

We proved that
2 2
{exp[ sup nAA g2 = 158 (2484, 09)) P (B (W)?) -k, 0|} <1

2

P
sup (n/lAp+1 4= 158 (20541 ) Pw (ToBpr1,0) = Kpi (9))” =1

P+ {exp[ sup

We also bounded the remaining terms by
IAg1| < 2(Pw + Pw) To[L(IWI = n4)By0]

< 2(Pw + Pw) | ToBg.0(W)*/By.1(n,)]
|A0,0| < (IPW +FW)T()BL().

|A-10 < 2IPW(B—1,0(9, W)?/B_1,1(6, Tlo)),

|Ap+1,5| < (IPW + FW) (TOBp+1,O/77p+1)



Bound in expectation

Assume that n > 28 and set 179 = +oc0. We get

IPW{sup Pwho — tho - y} < 0, where
0O

y=2[ (52 +8) “Rulcawi) 2 + ueiw)|

o [(108(2n/81)\ " (8 @/2
X33( log(2) ) (7)

w2 (B v a)puemn?) s+ 822 2]
AR
and (1) = (a+bt@)t™, 8§ = zgg; ”0520_{26”
52= up i [ 40007
and 83 = (210g(2k))1/2 max 3 Aff 2,

jeluil \ &



With the above definitions, consider an e-minimizer of the empirical risk
6(W) € O, that is an estimator satisfying IPy; almost surely

P(f(6,W)) < inf P(f(6,W)) +e.
€
Its mean excess risk satisfies

P |P(F(6, W))] < élégIP(f(Q, W) +y +e.



Deviation bounds

Introduce the increasing function

70 = < [exp(n - 1]

Remark that with probability at least 1 — ¢

. -1
Py (£(ITo(W)ID?) < 2(A0€ (10)*) P (E(IWI)?) + %
Take
Ao =&(no) >,
and choose 79 such that
10g(2/ 9)

———&(m)* =2(HP(£(W)?),
so that with probability at least 1 — §/2

Py (£(ITo(W))?) < 28(DP(£(IW])?).



Choosing thresholds

Choose as previously 7, and 7,41 such that

l
1(ng) = s and np4 = )
B,, 77q) 1, Mp+ 201

We get with probability at least 1 — §/2
Ag1] < 4(1+28(1)A,Pw |[ToByo0(W)?].
Aol < (1+ V2§(1))IPW(B%,0)1/2’
-1 0] < 2Pw (B, o/B-1,1(n0),
|Ap+1,5] < 2(1+28(1)) Aps1 Py (ToBps1,0)-



PAC-Bayesian inequality

We also have

Ay BgSi
Agr— “Lg(1)Py (B? 1
P+ {exp[n/lzlépz 7.2 g( ) W( qO) nd,

A
+Api14— p_+g(1)IPW(Bp+1,O) -

- ,3p+151” <1

n/1p+1

where

|
+Z/T'

g=1 "1

& |

P



Assume that ]P[f(llWll)z] 2 < B, where B is known and that n > 28,.
Consider the threshold 7 such that

Let 6 € O, be such that
Pw(f(6, ToW)) < inf P(f(6, ToW)) +e.
With probability at least 1 — 9, its excess risk is such that
Pw(f(6,W)) < g)relglPW(f(e, W)) +By +¢€

where y = 12 p®1 87" (Sl/n)”l/2 +7(83 +8y/p) " p~(1m) (Sl/n)l/2
+ 9" - 1)1 +7)8%p + 12821 (log(2/6) /n) '/
- O(log(n/Sl)a‘ (81/n) "‘/2), with p = [log(n/81)/log(2)].



