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Supervised learning through statistical inference

In this setting, we are given a large set of input-output data w1, . . . , wN ∈
W. Our goal is to optimize some processing of these data. The changes we are
ready to make to this processing is described by a set of tunable parameters
θ ∈ Θ. The quality of the processing is described by some loss function
L(w, θ) ∈ R. Our goal is to minimize

1

N

N∑
i=1

L(wi, θ)

with respect to θ ∈ Θ.
As we assume that N is potentially very large, we will draw at random

some independent identically distributed sample (W1, . . . ,Wn) according to
the uniform distribution on

{
w1, . . . , wN

}
, where the size n of the statistical

sample corresponds to the amount of computations we are ready to make.
This sample will be used to choose the parameters.

Although in this scenario the marginal sample distribution is the atomic
measure

1

N

N∑
i=1

δwi
,

we will in the following deal with arbitrary i.i.d. sample distributions P ∈
M1

+

(
W
)
, where W is assumed to be some arbitrary measurable space.

In this slightly more general setting, our goal is now to estimate

θ(P) ∈ arg min
θ∈Θ

∫
L(W, θ) dP,

where we assume that this is meaningful. For instance, we may consider some
probability measure π ∈ M1

+(Θ), where Θ is a measurable space equipped
with some σ-algebra and assume that (w, θ) 7→ L(w, θ) : W×Θ→ R belongs
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to L1(W × Θ,P ⊗ π) and is such that infθ∈Θ

∫
L(w, θ)dP(w) > −∞. The

fact that the minimum is reached and that θ(P) is uniquely defined is not
crucial, since we will only be able to work out some approximation of it.

From a technical perspective, we will look for some estimator θ̂ : Wn → Θ
such that θ̂(W1, . . . ,Wn) is an approximate minimizer in the sens that

`
[
θ̂(W1, . . . ,Wn)

] def
=

∫
L
[
w, θ̂(W1, . . . ,Wn)

]
dP(w)− inf

θ∈Θ

∫
L(w, θ) dP(w)

is “ as small as possible ” (in some sense to be made more precise in the
following).

Examples.

1. Supervised binary classification : w = (x, y) ∈ W = X × Y, where
Y = {−1,+1}, Θ ⊂ YX and L(w, θ) = 1

[
y 6= θ(x)

]
is the classification

error;

2. Least square linear regression : w = (x, y) ∈ W = Rd × R, Θ ⊂ Rd,

and L(w, θ) =
(
y − 〈θ, x〉

)2
is the quadratic risk;

3. Density estimation : W is arbitrary, Θ ⊂
{
θ ∈M1

+

(
W
)

; θ � π
}

, where

π ∈ M1
+(W) is some reference measure, and L(w, θ) = − log

[
dθ

dπ
(w)

]
.

In the case when P� π,

`
(
θ̂
)

= K
(
P, θ̂

)
,

where the Kullback Leibler divergence, also called relative entropy, is
defined as

K
(
P,Q

)
=


∫

log

(
dP

dQ

)
dP, P� Q,

+∞, otherwise,

for any probability measures P,Q ∈M1
+(W).

A few notations. Let P be the empirical measure, defined as

P =
1

n

n∑
i=1

δWi
.

We will use the following short notation of integrals :

f(P, ρ, π) =

∫
f(w, θ, θ′) dP(w) dρ(θ) dπ(θ′), (1)
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so that for instance

L(P, ρ) =

∫
L(w, θ) dP(w) dρ(θ).

1. The PAC-Bayes approach part I : classification

In this section, we will derive margin bounds for linear classification in
high dimension and its applications to kernel methods. PAC-Bayes theory
was first developed in the framework of supervised classification (see [11, 12,
13, 14, 10]). We start with this simpler setting, and will show in the next
section how to deal with more general loss functions.

1.1. A PAC-Bayes bound for 0-1 loss functions. Let us assume
that L(w, θ) ∈ {0, 1}. Given some parameter λ ∈ R, let us consider the
(normalized) log-Laplace transform of the Bernoulli distribution :

Φλ(p)
def
= −1

λ
log
[
1− p+ p exp(−λ)

]
.

Let us also consider the Kullback-Leibler divergence of Bernoulli distributions

K(q, p)
def
= q log

(
q

p

)
+ (1− q) log

(
1− q
1− p

)
.

Let us recall first Chernoff’s bound.

Proposition 1.1 For any fixed value of the parameter θ ∈ Θ, the identity∫
exp
[
−λL(P, θ)

]
dP⊗n = exp

{
−λΦλ

[
L(P, θ)

]}
shows that with probability at least 1− ε,

L(P, θ) ≤ B+

[
L(P, θ), log(ε−1)/n

]
,

where B+(q, δ) = inf
λ∈R+

Φ−1
λ

(
q +

δ

λ

)
= sup

{
p ∈ [0, 1] : K(q, p) ≤ δ

}
, q ∈ [0, 1], δ ∈ R+.

Moreover
−δq ≤ B+(q, δ)− q −

√
2δq(1− q) ≤ 2δ(1− q).

April 2, 2012 Olivier Catoni



1.1 A PAC-Bayes bound for 0-1 loss functions 4

In the same way, the identity∫
exp
[
λL(P, θ)

]
dP⊗n = exp

{
λΦ−λ

[
L(P, θ)

]}
shows that with probability at least 1− ε

L(P, θ) ≤ B−
[
L(P, θ), log(ε−1)/n

]
,

where B−(q, δ) = inf
λ∈R+

Φ−λ(q) +
δ

λ

= sup
{
p ∈ [0, 1] : K(p, q) ≤ δ

}
, q ∈ [0, 1], δ ∈ R+,

and
−δq ≤ B−(q, δ)− q −

√
2δq(1− q) ≤ 2δ(1− q).

Let us mention here some important identity.

Proposition 1.2 For any probability measures π and ρ on some measurable
space, such that K(ρ, π) < ∞, and any bounded measurable function h, let
us define the transformed probability measure πexp(h) � π by its density

dπexp(h)

dπ
=

exp(h)

Z
,

where Z =
∫

exp(h) dπ. Let us moreover define

Var
(
h dπ

)
=
∫ (
h−

∫
h dπ

)2
dπ.

The expectations with respect to ρ and π of h and the log-Laplace transform
of h are linked by the identities∫

h dρ−K(ρ, π) + K(ρ, πexp(h)) = log
[∫

exp(h) dπ
]

(2)

=
∫
h dπ +

∫ 1

0
(1− α)Var

[
h dπexp(αh)

]
dα. (3)

Proof. The first identity is a straightforward consequence of the definitions
of πexp(h) and of the Kullback-Leibler divergence function. The second one is
the Taylor expansion of order one with integral remainder of the function

f(α) = log
[∫

exp(αh) dπ
]
,

which says that f(1) = f(0) + f ′(0) +
∫ 1

0
(1− α)f ′′(α) dα. �
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Exercise 1 Prove that f ∈ C∞. Hint : write

exp(αh) = 1 +

∫ +∞

0

1(γ ≤ α)h exp(γh) dγ

and use Fubini’s theorem to show that α 7→
∫

exp(αh) dπ belongs to C1.

Let us come now to the proof of Proposition 1.1 (page 3). Chernoff’s
inequality reads

Φλ

[
L(P, θ)

]
− log(ε−1)

nλ
≤ L(P, θ),

where the inequality holds with probability at least 1− ε. Since the left-hand
side is non-random, it can be optimized in λ, giving L(P, θ) ≤ B+

[
L(P, θ), log(ε−1)/n

]
.

Exercise 2 Prove this statement in more details. For any integer k > 1,
consider the event

Ak =
{

sup
λ∈R+

F (λ)− k−1 > L(P, θ)
}
,

where F (λ) = Φλ

[
L(P, θ)

]
− log(ε−1)

nλ
. Show that P⊗n(Ak) ≤ ε by choos-

ing some suitable value of λ. Remark that Ak ⊂ Ak+1 and conclude that
P⊗n

(
∪kAk

)
≤ ε.

Since

lim
λ→+∞

Φ−1
λ

(
q +

δ

λ

)
= lim

λ→+∞

1− exp(−λq − δ)
1− exp(−λ)

≤ 1,

B+(q, δ) ≤ 1.
Applying equation (2, page 4) to Bernoulli distributions gives

λΦλ(p) = λq +K(q, p)−K(q, pλ)

where
pλ =

p

p+ (1− p) exp(λ)
.

This shows that

B+(q, δ) = sup
{
p ∈ [0, 1] : Φλ(p) ≤ q +

δ

λ
, λ ∈ R+

}
= sup

{
p ∈ [q, 1[ : K(q, p) ≤ δ +K(q, pλ), λ ∈ R+

}
= sup

{
p ∈ [q, 1[ : K(q, p) ≤ δ

}
= sup

{
p ∈ [0, 1] : K(q, p) ≤ δ

}
,
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because when q ≤ p < 1 then λ = log

(
q−1 − 1

p−1 − 1

)
∈ R+, q = pλ and therefore

K(q, pλ) = 0.

Let us remark now that
∂2

∂x2
K(x, p) = x−1(1−x)−1. Thus if p ≥ q ≥ 1/2,

then

K(q, p) ≥ (p− q)2

2q(1− q)
,

so that if K(q, p) ≤ δ, then

p ≤ q +
√

2δq(1− q).

Now if q ≤ 1/2 and p ≥ q then

K(q, p) ≥


(p− q)2

2p(1− p)
, p ≤ 1/2

2(p− q)2, p ≥ 1/2

 ≥ (p− q)2

2p(1− q)
,

so that if K(q, p) ≤ δ, then

(p− q)2 ≤ 2δp(1− q),

implying that

p− q ≤ δ(1− q) +
√

2δq(1− q) + δ2(1− q)2 ≤
√

2δq(1− q) + 2δ(1− q).

On the other hand,

K(q, p) ≤ (p− q)2

2 min{q(1− q), p(1− p)}
≤ (p− q)2

2q(1− p)
,

thus when K(q, p) = δ with p > q, then

(p− q)2 ≥ 2δq(1− p),

implying that

p− q ≥ −δq +
√

2δq(1− q) + δ2q2 ≥
√

2δq(1− q)− δq.

Exercise 3 The second part of Proposition 1.1 (page 3) is proved in the
same way and left as an exercise.
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1.1 A PAC-Bayes bound for 0-1 loss functions 7

We are now going to make Proposition 1.1 uniform with respect to θ. The
PAC-Bayes approach to this is to randomize θ, so we will consider now joint
distributions on (W1, . . . ,Wn, θ), where the distribution of (W1, . . . ,Wn) is
still P⊗n and the conditional distribution of θ given the sample is given by
some transition probability kernel ρ : Wn →M1

+(Θ), called in this context a
posterior distribution∗. This posterior distribution ρ will be compared with
a prior (meaning non-random) probability measure π ∈M1

+(Θ).

Proposition 1.3 Let us introduce the notation

BΛ(q, δ) = inf
λ∈Λ

Φ−1
λ

(
q +

δ

λ

)
.

For any prior probability measure π ∈M1
+(Θ) and any λ ∈ R+,∫

exp

[
sup

ρ∈M1
+(Θ)

nλ
{

Φλ

[
L(P, ρ)

]
− L(P, ρ)

}
−K(ρ, π)

]
dP⊗n ≤ 1, (4)

and therefore for any finite set Λ ⊂ R+, with probability at least 1 − ε, for
any ρ ∈M1

+(Θ),

L(P, ρ) ≤ BΛ

(
L(P, ρ),

K(ρ, π) + log
(
|Λ|/ε

)
n

)
,

Proof. The exponential moment inequality (4) is a consequence of equation
(2, page 4), showing that

exp

{
sup

ρ∈M1
+(Θ)

nλ

∫ {
Φλ

[
L(P, θ)

]
− L(P, θ)

}
dρ(θ)−K(ρ, π)

}

≤
∫

exp

[
nλ
{

Φλ

[
L(P, θ)

]
− L(P, θ)

}]
dπ(θ),

and of the fact that Φλ is convex, showing that Φλ

[
L(P, ρ)

]
≤
∫

Φλ

[
L(P, θ)

]
dρ(θ).

The deviation inequality follows as usual. �
We cannot take the infimum on λ ∈ R+ as in Proposition 1.1 (page 3),

because we can no more cast our deviation inequality in such a way that λ
appears on some non-random side of the inequality. Nevertheless, we can get
a more explicit bound from some specific choice of the set Λ.

∗We will assume that ρ is a regular conditional probability kernel, meaning that for any
measurable set A the map (w1, . . . , wn) 7→ ρ(w1, . . . , wn)(A) is assumed to be measurable.
We will also assume that the σ-algebra we consider on Θ is generated by a countable family
of subsets. See [6, page 50] for more details

April 2, 2012 Olivier Catoni



1.1 A PAC-Bayes bound for 0-1 loss functions 8

Proposition 1.4 Let us define the least increasing upper bound of the vari-
ance of a Bernoulli distribution of parameter p ∈ [0, 1] as

v(p) =

{
p(1− p), p ≤ 1/2,

1/4, otherwise.

Let us choose some positive integer parameter m and let us put

t =
1

4
log

(
n

8 log
[
(m+ 1)/ε

]).
With probability at least 1− ε, for any ρ ∈M1

+(Θ),

L(P, ρ) ≤ L(P, ρ) +Bm

[
L(P, ρ),K(ρ, π), ε

]
,

where

Bm

(
q, e, ε

)
= max

{√
2v(q)

{
e+ log

[
(m+ 1)/ε

]}
n

cosh
(
t/m

)
+

2(1− q)
{
e+ log

[
(m+ 1)/ε

]}
n

cosh(t/m)2,

2
{
e+ log

[
(m+ 1)/ε

]}
n

}

≤

√
2v(q)

{
e+ log

[
(m+ 1)/ε

]}
n

cosh
(
t/m

)
+

2
{
e+ log

[
(m+ 1)/ε

]}
n

cosh(t/m)2.

Moreover, as soon as n ≥ 5,

Bblog(n)2c−1(q, e, ε) ≤ B(q, e, ε)
def
=

√
2v(q)

{
e+ log

[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]
+

2
{
e+ log

[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]2
, (5)

so that with probability at least 1− ε, for any ρ ∈M1
+(Θ),

L(P, ρ) ≤ L(P, ρ)
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1.1 A PAC-Bayes bound for 0-1 loss functions 9

+

√√√√2v
[
L(P, ρ)

]{
K(ρ, π) + log

[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]
+

2
{
K(ρ, π) + log

[
log(n)2/ε

]}
n

cosh
[
log(n)−1

]2
.

Proof. Let us put

q = L(P, ρ),

δ =
K(ρ, π) + log

[
(m+ 1)/ε

]
n

,

λmin =

√
8 log

[
(m+ 1)/ε

]
n

,

Λ =
{
λ

1−k/m
min , k = 0, . . . ,m

}
,

p = BΛ(q, δ) = inf
λ∈Λ

Φ−1
λ

(
q +

δ

λ

)
,

λ̂ =

√
2δ

v(p)
.

According to equation (3, page 4) applied to Bernoulli distributions, for any
λ ∈ Λ,

Φλ(p) = p− 1

λ

∫ λ

0

(λ− α)pα(1− pα) dα ≤ q +
δ

λ
.

As moreover pα ≤ p,

p− q ≤ inf
λ∈Λ

λv(p)

2
+
δ

λ
= inf

λ∈Λ

√
2δv(p) cosh

[
log

(
λ̂

λ

)]
.

As v(p) ≤ 1/4 and δ ≥
log
[
(m+ 1)/ε

]
n

,√
2δ

v(p)
= λ̂ ≥ λmin =

√
8 log

[
(m+ 1)/ε

]
n

.

Therefore either λmin ≤ λ̂ ≤ 1, or λ̂ > 1. Let us consider these two cases
separately.

If λmin = min Λ ≤ λ̂ ≤ max Λ = 1, then log
(
λ̂
)

is at distance at most t/m
from some log

(
λ
)

where λ ∈ Λ, because log(Λ) is a grid with constant steps
of size 2t/m. Thus

p− q ≤
√

2δv(p) cosh
(
t/m

)
.
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1.2 Linear classification and support vector machines 10

If moreover q ≤ 1/2, then v(p) ≤ p(1 − q), so that we obtain a quadratic
inequality in p, whose solution is less than

p ≤ q +
√

2δq(1− q) cosh
(
t/m

)
+ 2δ(1− q) cosh

(
t/m

)2
.

If on the contrary q ≥ 1/2, then v(p) = v(q) = 1/4 and

p ≤ q +
√

2δv(q) cosh
(
t/m

)
,

so that in both cases

p− q ≤
√

2δv(q) cosh(t/m) + 2δ(1− q) cosh
(
t/m

)2
. (6)

Let us consider now the case when λ̂ > 1. In this case

p− q ≤
√

2δv(p) λ̂ = 2δ.

In conclusion, applying Proposition 1.3 (page 7) we see that with proba-
bility at least 1− ε, for any posterior distribution ρ,

L(P, ρ) ≤ p ≤ q + max
{

2δ,
√

2δv(q) cosh
(
t/m

)
+ 2δ(1− q) cosh

(
t/m

)2
}
,

which is precisely the statement to be proved.
In the special case when m = blog(n)2c − 1 ≥ log(n)2 − 2,

t

m
≤ 1

4
[
log(n)2 − 2

] log

(
n

8 log
[
log(n)2 − 1

]) ≤ log(n)−1

as soon as the last inequality holds, that is as soon as n ≥ exp(
√

2) ' 4.11
to make log(n)2 − 2 positive and

3 log(n)2 − 8 + log(n) log
{

8 log
[
log(n)2 − 1

]}
≥ 0,

which holds true for any n ≥ 5, as can be checked numerically. �

1.2. Linear classification and support vector machines. We are
going in this section to consider more specifically the case of linear binary
classification. In this setting W = X×Y = Rd×{−1,+1}, w = (x, y), where
x ∈ Rd and y ∈ {−1,+1}, Θ = Rd, and

L(w, θ) = 1
[
〈θ, x〉y ≤ 0

]
.
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1.2 Linear classification and support vector machines 11

Although we will stick in this presentation to the case when X is a
vector space of finite dimension, the results also apply to support vector
machines, where the pattern space is some arbitrary space mapped to a
Hilbert space H by some implicit mapping Ψ : X → H, Θ = H and
L(w, θ) = 1

(
〈θ,Ψ(x)〉y ≤ 0

)
. It turns out that classification algorithms

do not need to manipulate H itself, but only to compute scalar products
of the form k(x1, x2) = 〈Ψ(x1),Ψ(x2)〉, defining a symmetric positive kernel
k on the original pattern space X. The converse is also true, any positive
symmetric kernel k can be represented as a scalar product in some mapped
Hilbert space (this is the Moore-Aronszajn theorem). Often used kernels on
Rd are

k(x1, x2) =
(
1 + 〈x1, x2〉

)s
, for which dimH <∞,

k(x1, x2) = exp
(
−‖x1 − x2‖2

)
, for which dimH = +∞.

In the following, we will work in Rd, which covers only the case when
dimH <∞, but extensions would be possible.

Let us consider, after [10, 13] as prior probability measure π the centered
Gaussian measure with covariance β−1 Id, so that

dπ

dθ
(θ) =

(
β

2π

)d/2
exp

(
−β‖θ‖

2

2

)
.

Let us also consider the function

ϕ(x) =
1√
2π

∫ +∞

x

exp
(
−t2/2

)
dt, x ∈ R

≤ min
{ 1

x
√

2π
,
1

2

}
exp

(
−x

2

2

)
, x ∈ R+.

Let πθ be the measure π shifted by θ, defined by the identity∫
h(θ′) dπθ(θ

′) =

∫
h(θ + θ′) dπ(θ′).

In this case

K(πθ, π) =
β

2
‖θ‖2,

and
L(w, πθ) = ϕ

[√
β‖x‖−1〈θ, x〉y

]
.

Thus the randomized loss function has an explicit expression : randomization
replaces the indicator function of the negative real line by a smooth approx-
imation. As we are eventually interested in L(w, θ), we will shift things a
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1.2 Linear classification and support vector machines 12

little bit, considering along with the classification error function L some error
with margin

M(w, θ) = 1
[
y‖x‖−1〈θ, x〉 ≤ 1

]
.

Unlike L(w, θ) which is independent of the norm of θ, the margin error
M(w, θ) depends on ‖θ‖, counting a classification error each time x is at
distance less than ‖x‖/‖θ‖ from the boundary {x′ : 〈θ, x′〉 = 0}, so that
the error with margin region is the complement of the open cone

{
x ∈

Rd ; y〈θ, x〉 > ‖x‖
}

.
Let us compute the randomized margin error

M(w, πθ) = ϕ
{√

β
[
y‖x‖−1〈θ, x〉 − 1

]}
.

It satisfies the inequality

M(w, πθ) ≥ ϕ(−
√
β
)
L(w, θ) =

[
1− ϕ

(√
β
)]
L(w, θ).

Applying previous results we obtain

Proposition 1.5 With probability at least 1− ε, for any θ ∈ Rd,

L(P, θ) ≤
[
1− ϕ(

√
β)
]−1

M(P, πθ) ≤ C1(θ),

where

C1(θ) =
[
1− ϕ

(√
β
)]−1

B

(
M(P, πθ),

β‖θ‖2

2
, ε

)
,

the bound B being defined by equation (5, page 8).

We can now minimize this empirical upper-bound to define an estimator.
Let us consider some estimator θ̂ such that

C1(θ̂) ≤ inf
θ∈Rd

C1(θ) + ζ.

Then for any fixed parameter θ?, C1(θ) ≤ C1(θ?) + ζ. On the other hand,
with probability at least 1− ε

M(P, πθ?) ≤ B−

(
M(P, πθ?),

log(ε−1)

n

)
.

Indeed∫
exp
{
nλ
[
M(P, πθ?)− Φ−λ

[
M(P, πθ?)

]}
dP⊗n

≤
∫

exp

{
nλ

∫ {
M(P, θ)− Φ−λ

[
M(P, θ)

}
dπθ?(θ)

}
dP⊗n ≤ 1,

because p 7→ −Φ−λ(p) is convex. As a consequence
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1.2 Linear classification and support vector machines 13

Proposition 1.6 With probability at least 1− 2ε,

L(P, θ̂) ≤

inf
θ?∈Θ

[
1− ϕ

(√
β
)]−1

B

(
B−

(
M(P, πθ?),

log(ε−1)

n

)
,
β‖θ?‖2

2
, ε

)
+ ζ.

It is also possible to state a result in terms of empirical margins. Indeed

M(w, πθ) ≤M(w, θ/2) + ϕ(
√
β).

Thus with probability at least 1− ε, for any θ ∈ Rd,

L(P, θ) ≤ C2(θ),

where

C2(θ) =
[
1− ϕ

(√
β
)]−1

B

(
M(P, θ/2) + ϕ

(√
β
)
,
β‖θ‖2

2
, ε

)
.

However, C1 and C2 are non-convex criterions, faster minimization algorithms
are available for the usual SVN loss function, for which it is also possible to
derive some generalization bound. Indeed

M(w, πθ) = ϕ
[√

β
(
〈θ, x〉y − 1

)]
≤
(
2− 〈θ, x〉y

)
+

+ ϕ(
√
β).

Thus we also have, using this time Proposition 1.3 (page 7)

Proposition 1.7 With probability at least 1− ε, for any θ ∈ Rd,

L(P, θ) ≤
[
1− ϕ

(√
β
)]−1

BΛ

(∫ (
2− 〈θ, x〉y

)
+
dP(x, y) + ϕ(

√
β),

β‖θ‖2 + 2 log
(
|Λ|/ε

)
2n

)
=
[
1− ϕ

(√
β
)]−1

inf
λ∈Λ

Φ−1
λ

[
C3(λ, θ) + ϕ

(√
β
)

+
log
(
|Λ|/ε

)
nλ

]
,

where

C3(λ, θ) =

∫ (
2− 〈θ, x〉y

)
+

dP(x, y) +
β‖θ‖2

2nλ
.

The loss function C3(λ, θ) is the most employed learning criterion for support
vector machines, and is called the box constraint. It is convex in θ. There
are fast algorithms to compute infθ C3(λ, θ) for any fixed value of λ. Here we
get an empirical criterion which could be used to optimize also the value of
λ.
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2. The PAC-Bayes approach part II : arbitrary loss functions

2.1. Estimate of the risk at some fixed parameter value. Let us
for short define the risk as

R(θ) =

∫
L(w, θ) dP(w).

We want to minimize R. In the classification section, we started with
estimates of R(θ) for a given value of θ. This is not however always the most
effective way to handle the minimization of R. Estimating the variations of
the criterion between to parameter values may give faster convergence rates.
This is what we are going to explain here, before applying the results to the
case of least square regression. Let

L′(w, θ, θ′)
def
= L(w, θ)− L(w, θ′), θ, θ′ ∈ Θ,

R′(θ, θ′)
def
= R(θ)−R(θ′)

=

∫
L′(w, θ, θ′) dP(w), θ, θ′ ∈ Θ.

Let us first discuss the estimation of R′(θ, θ′) for fixed values of θ and θ′.
We will derive some bounds of the Chernoff kind.

Let us consider the following piecewise C2 influence function ψ : R → R

satisfying the inequality

− log
(
1− x+ x2/2

)
≤ ψ(x) ≤ log

(
1 + x+ x2/2

)
, x ∈ R, (7)

and defined as

ψ(x) =


− log(2), x ≤ 1,

log
(
1 + x+ x2/2

)
, −1 ≤ x ≤ 0,

− log
(
1− x+ x2/2

)
, 0 ≤ x ≤ 1,

log(2), x ≥ 1, x ∈ R,

Let us remark that

− log
(
1− x+ x2/2

)
= log

(
1 + x+ x2/2

1 + x4/4

)
≤ log

(
1 + x+ x2/2

)
,

showing that equation (7) holds. Let us consider for some parameter λ ∈ R∗+
the empirical counterpart of R′(θ, θ′) defined as

r′λ(θ, θ
′) = λ−1

∫
ψ
[
λL′(w, θ, θ′)

]
dP.

Let us remark that it is antisymmetric : rλ(θ, θ
′) = −rλ(θ′, θ) for any θ, θ′ ∈

Θ. The influence function ψ is chosen in order to satisfy the following lemma.
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2.1 Estimate of the risk at some fixed parameter value 15

Lemma 2.1 Let us consider some fixed pair of parameters (θ, θ′) ∈ Θ2. Let
us assume that w 7→ L′(w, θ, θ′) ∈ L2(P). For any λ ∈ R+,∫

exp
[
nλr′λ(θ, θ

′)
]

dP⊗n

≤ exp

{
n log

[
1 + λR′(θ, θ′) +

λ2

2

∫
L′(w, θ, θ′)2 dP(w)

]}
.

Corollary 2.2 Under the same hypotheses, with probability at least 1− ε,

r′λ(θ, θ
′) ≤ 1

λ
log

[
1 + λR′(θ, θ′) +

λ2

2

∫
L′(w, θ, θ′)2 dP(w)

]
+

log(ε−1)

nλ

≤ R′(θ, θ′) +
λ

2

∫
L′(w, θ, θ′)2 dP+

log(ε−1)

nλ
.

Let us assume for simplicity that infθ∈Θ R(θ) is reached at θ?. Let us choose
some slope parameter a ∈ R+ and let us put

b = sup

{∫
L′
(
w, θ, θ?

)2
dP(w)− aR′(θ, θ?) ; θ ∈ Θ

}
,

so that ∫
L′(w, θ, θ?)

2 dP(w) ≤ aR′(θ, θ?) + b.

Corollary 2.3 For any λ ∈ R+, any θ ∈ Θ, with probability at least 1− ε,

R(θ)−R(θ?) ≤
r′λ(θ, θ?) +

bλ

2
+

log(ε−1)

nλ

1− aλ

2

≤
sup
θ′∈Θ

r′λ(θ, θ
′) +

bλ

2
+

log(ε−1)

nλ

1− aλ

2

.

We would like to proceed by minimizing the right-hand side of this last in-
equality, something we are not allowed to do, because this “probably approx-
imately correct” inequality is not uniform with respect to θ ∈ Θ.
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2.2 PAC-Bayes bounds 16

2.2. PAC-Bayes bounds. As in the classification case, the PAC-Bayes
approach consists in considering randomized values of θ, possibly depending
on the sample (W1, . . . ,Wn), whose conditional distribution with respect to
(W1, . . . ,Wn) is described by a posterior distribution ρ : Wn → M1

+(Θ). As
we may for commodity wish to randomize in a larger parameter set, let us
introduce the target set Θ? ⊂ Θ and let us assume that the infimum of the
criterion is reached on this set, so that we may consider θ? ∈ arg minΘ? R.

Lemma 2.4 Let π ∈M1
+(Θ) be some prior probability measure.∫

exp

{
sup

ρ∈M1
+(Θ)

∫ [
−n log

(
1− λR′(θ, θ′)

+
λ2

2

∫
L′(w, θ, θ′)2 dP(w)

)
− nλr′λ(θ, θ′)

]
dρ(θ) dπ(θ′)

−K(ρ, π)

}
dP⊗n ≤ 1. (8)

This lemma is a consequence of the following corollary of equation (2,
page 4).

Lemma 2.5 For any upper-bounded real valued measurable function h and
any probability measure π,

log

(∫
exp(h) dπ

)
= sup

ρ∈M1
+(Θ)

∫
h dρ−K(ρ, π). (9)

Proof. When h is upper-bounded, exp(h) is bounded and we can define
πexp(h) as in Proposition 1.2 (page 4). If K(ρ, π) = +∞, then

∫
h dρ −

K(ρ, π) = −∞. If on the other hand K(ρ, π) < +∞, log
(

dρ
dπ

)
∈ L1(ρ) and

K
(
ρ, πexp(h)

)
= K(ρ, π)−

∫
h dρ− log

(∫
exp(h) dπ

)
. (10)

If
∫
h dρ = −∞, then again

∫
h dρ − K(ρ, π) = −∞, otherwise h ∈ L1(ρ),

and the above equation shows that in this case

log

(∫
exp(h) dπ

)
≥
∫
h dρ−K(ρ, π). (11)

In the case when ρ = πexp(h), the left-hand side of equation (10) is null, so
that h ∈ L1(ρ), and equation (10) shows that equality is reached in equation
(11) when ρ = πexp(h). �
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2.2 PAC-Bayes bounds 17

Let us now come to the proof of Lemma 2.4 (page 16). The left-hand side
of the inequality to be proved is well defined, if suitably interpreted. Indeed,
even if L′(·, θ, θ′) 6∈ L1(P), we may still define by convention

−λR′(θ, θ′) +
λ2

2

∫
L′(w, θ, θ′)2 dP(w)

as ∫ [
−λL′(w, θ, θ′) +

λ2

2
L′(w, θ, θ′)2

]
dP(w).

Indeed, we are now taking the expectation of a measurable function lower-
bounded by −1/2, which always makes sense in R ∪ {+∞}. Making this
interpretation, we get that

−n log

(
1− λR′(θ, θ′) +

λ2

2

∫
L′(w, θ, θ′) dP(w)

)
− nλr′λ(θ, θ′)

takes its values in [−∞, 2n log(2)], due to the fact that ψ is upper bounded
by log(2). Thus we can define its generalized expectation, with values in
R∪ {−∞}, with respect to any probability measure bearing on (θ, θ′). Thus
the left-hand side of equation (8) is well defined if we adopt these conventions,
and according to Lemma 2.5 (page 16), it is not greater than∫ (

1− λR′(θ, θ′) +
λ2

2
(L′)2(P, θ, θ′)

)−n
exp
[
−nλr′λ(θ, θ′)

]
dπ(θ)dπ(θ′)dP⊗n.

According to Fubini’s theorem for positive functions, this is equal to∫ (
1− λR′(θ, θ′) +

λ2

2
(L′)2(P, θ, θ′)

)−n
exp
[
−nλr′λ(θ, θ′)

]
dP⊗ndπ(θ)dπ(θ′),

which is in turn not greater than 1, since

−ψ(x) ≤ min
{

log(2),− log
(
1− x+ x2/2

)}
,

and therefore

exp
[
−nλr′λ(θ, θ′)

]
≤

n∏
i=1

min

{
2,

(
1− λL′(Wi, θ, θ

′) +
λ2

2
L′(Wi, θ, θ

′)2

)}
.

This ends the proof of Lemma 2.4 (page 16).
In order to go further while staying reasonably explicit, let us assume from

now on that Θ = Rd. Let us consider some probability measure π ∈M1
+

(
Rd
)
,
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2.2 PAC-Bayes bounds 18

which we will choose below to be concentrated near the origin. Let πθ be the
shifted measure defined by the formula∫

h(θ′) dπθ(θ
′) =

∫
h(θ + θ′) dπ(θ′),

for any bounded measurable function h. Let us consider as already explained,
some closed subparameter set Θ? ⊂ Θ, and θ? ∈ arg min

Θ?

R, assuming for

simplicity that it exists.
Simplifying somehow the previous lemma gives

Proposition 2.6 Let us assume that for any θ ∈ Θ, L(·, θ) ∈ L1(P), so
that R(θ) = L(P, θ) is well defined, and that θ? ∈ arg min

Θ?

R.

With probablity at least 1− ε, for any θ ∈ Θ, as soon as

(L′)2(P, πθ, πθ?) < +∞,

(θ1, θ2) 7→ R′(θ1, θ2) ∈ L1

(
πθ ⊗ πθ?

)
, and

R′(πθ, πθ?) ≤ r′λ(πθ, πθ?) +
λ

2
(L′)2(P, πθ, πθ?) +

K(πθ, πθ?) + log(ε−1)

nλ
.

Proof. Indeed, when (L′)2
(
P, πθ, πθ?

)
< +∞,∫

R′(θ1, θ2)2 dπθ(θ1)dπθ?(θ2) =

∫ (∫
L′(w, θ1, θ2) dP(w)

)2

dπθ(θ1) dπθ?(θ2)

≤ (L′)2(P, πθ, πθ?) < +∞,

so that R′ ∈ L2(πθ ⊗ πθ?) ⊂ L1(πθ ⊗ πθ?), and the proposition follows from
Lemma 2.4 (page 16) and the fact that log(1 + x) ≤ x. �

In order to use this proposition, let us modify our generalized margin
assumption, assuming instead that for any D ∈ R+,

(L′)2(P, πθ, πθ?) ≤ aDR
′(θ, θ?) + bD, θ ∈ Θ?, R

′(θ, θ?) ≤ D2.

Let us also make an assumption linking the excess risk R′(θ, θ?) with the
entropy K(πθ, πθ?). Namely, let us assume that for any D ∈ R+ and some
pD ∈ R∗+ and qD ∈ R,

K(πθ, πθ?) ≤ pDR
′(θ, θ?) + qD, θ ∈ Θ?, R

′(θ, θ?) ≤ D2.

Let us assume in the same way that for some ξ ∈ R,

R′(θ, θ?) ≤ R(πθ, πθ?) + ξ, θ ∈ Θ?.

(In the application to least square regression, we can take ξ = 0.)
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2.2 PAC-Bayes bounds 19

Corollary 2.7 With probability at least 1 − ε, for any θ ∈ Θ? and any
D ∈ R+ such that R′(θ, θ?) ≤ D2,

R′(θ, θ?) ≤
(

1− aDλ

2
− pD
nλ

)−1(
r′λ(πθ, πθ?) +

λbD
2

+
qD + log(ε−1)

nλ
+ ξ

)
.

Let us consider some pseudo-estimator θ̃(W1, . . . ,Wn) such that

r′λ(πθ̃, πθ?) = inf
θ∈Θ?

r′λ(πθ, πθ?).

We assume for simplicity that it exists. (If not, we can find some estimator
which reaches the infimum up to some arbitrary small margin.) This is not
a legitimate estimator, since it cannot be computed from the observations,
but it will serve nevertheless to state the following proposition.

Proposition 2.8 Let us consider any estimator θ̂ ∈ Θ? such that for some
ζ > 0,

sup
θ′∈Θ?

r′λ(πθ̂, πθ′) ≤ inf
θ∈Θ?

sup
θ′∈Θ?

r′λ(πθ, π
′
θ) + ζ.

With probability at least 1− ε, for any D ∈ R+, as soon as

max
{
R′(θ̂, θ?), R

′(θ̃, θ?)
}
≤ D2, (12)

R′(θ̂, θ?) ≤
(

1− λaD
2
− pD
nλ

)−1[
sup
θ′∈Θ?

r′λ(πθ̂, πθ′)

+
λbD

2
+
qD + log(ε−1)

nλ
+ ξ

]
and R′(θ̂, θ?) +R′(θ̃, θ?) ≤

(
1− λaD

2
− pD
nλ

)−1[
λbD

+
2
[
qD + log(ε−1)

]
nλ

+ 2ξ + ζ

]
.

Proof. Let us mention that (θ, θ′) 7→ r′λ(θ, θ
′) is a bounded measurable

function, since −λ−1 log(2) ≤ r′λ(θ, θ
′) ≤ λ−1 log(2), thus the suprema and

infima appearing in the proposition are all finite real numbers. Let us remark
now that, according to the assumption made on the estimator θ̂,

r′λ(πθ̂, πθ?) ≤ sup
θ′∈Θ?

r′λ(πθ̂, πθ′) ≤ sup
θ′∈Θ?

r′λ(πθ? , πθ′) + ζ

= − inf
θ′∈Θ?

r′λ(πθ′ , πθ?) + ζ = −r′λ(πθ̃, πθ?) + ζ.
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2.3 Simplified criterion 20

Applying Corollary 2.7 (page 19) we deduce that with probability at least
1− ε, as soon as condition (12) is fullfilled,

R′(θ̂, θ?) ≤
(

1− λaD
2
− pD
nλ

)−1[
sup
θ′∈Θ?

r′λ(πθ̃, πθ′)

+
λbD

2
+
qD + log(ε−1)

nλ
+ ξ

]
,

≤
(

1− λaD
2
− pD
nλ

)−1[
−r′λ(πθ̃, πθ?) + ζ

+
λbD

2
+
qD + log(ε−1)

nλ
+ ξ

]
,

R′(θ̃, θ?) ≤
(

1− λaD
2
− pD
nλ

)−1[
r′λ(πθ̃, πθ?) +

λbD
2

+
qD + log(ε−1)

nλ
+ ξ

]
,

so that the last result of the proposition is obtained by summing up these
two inequalities. �

2.3. Simplified criterion. As we will see below, in some situations,
r′λ(πθ, πθ′) can be compared with the simpler criterion

r̃λ(θ, θ
′)

def
= λ−1

∫
ψ
[
λL′(w, πθ, πθ′)

]
dP(w),

where the integration with respect to πθ and πθ′ is performed inside the
influence function ψ.

Indeed let us introduce the numerical constant c = 3/ log(4) ≤ 2.17 and
the (hopefully) small quantity

ηD = cλ

∫
sup
{
Var

[
L(w, θ1) dπθ(θ1)

]
, θ ∈ Θ?, R

′(θ, θ?) ≤ D2
}

dP(w)

+ cλ

∫
Var

[
L(w, θ2) dπθ?(θ2)

]
dP(w) +

log(ε−1)

nλ
.

We assume that it makes sense, namely that
∫
L(w, θ′)2 dπθ(θ

′) dP(w) < ∞
for all θ ∈ Θ? and that

w 7→ sup
{
Var

[
L(w, θ1) dπθ(θ1)

]
, θ ∈ Θ?, R

′(θ, θ?) ≤ D2
}
∈ L1(P).

Lemma 2.9 For any D ∈ R+, with probability at least 1− ε, for any θ ∈ Θ?

such that R′(θ, θ?) ≤ D2,

r′λ(πθ, πθ?) ≤ r̃λ(θ, θ?) + ηD.
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2.3 Simplified criterion 21

Proof. Let us remark first that for any x ∈ [0, 1],

ψ′(x) =
1− x

1− x+ x2/2
,

ψ′′(x) = −2
1− (1− x)2[
1 + (1− x)2

]2 ≥ −2.

Using the symmetries of ψ, we deduce from this inequality that

x 7→ ψm(x) = ψ(x) + (x−m)2

is convex on the whole real line for any value of m ∈ R. Jensen’s inequality
tells us that for any probability measure ρ ∈ M1

+(Θ) and any function h ∈
L1(ρ),

ψm

[∫
h(θ) dρ(θ)

]
≤
∫
ψm
[
h(θ)

]
dρ(θ).

Choosing m =
∫
h(θ) dρ(θ) gives

ψ

[∫
h(θ) dρ(θ)

]
≤
∫
ψ
[
h(θ)

]
dρ(θ) + Var

[
h(θ) dρ(θ)

]
.

Using the symmetry ψ(−h) = −ψ(h) and working now with −h instead of h
proves the reversed inequality, so that

Lemma 2.10 For any probability measure ρ ∈M1
+(Θ) and any function h ∈

L1(ρ),∣∣∣∣∫ ψ
[
h(θ)

]
dρ(θ)− ψ

[∫
h(θ) dρ(θ)

]∣∣∣∣ ≤ min
{

log(4),Var
[
h(θ) dρ(θ)

]}
≤ log

{
1 + cVar

[
h(θ) dρ(θ)

]}
.

Proof. The last inequality is a consequence of the inequality min
{

log(4), x
}
≤

log(1 + cx), which, according to the fact that x 7→ log(1 + cx) is concave has
to be checked only when x = log(4), where we get an equality for the chosen
value of c. �

Applying this lemma, we see that

r′λ(πθ, πθ?)− r̃λ(θ, θ?)

≤ λ−1

∫
log
{

1 + cλ2 Var
[
L′(w, θ1, θ2) dπθ(θ1) dπθ?(θ2)

]}
dP(w).
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2.3 Simplified criterion 22

We can now remark that

Var
[
L′(w, θ1, θ2) dπθ(θ1) dπθ?(θ2)

]
= Var

[
L(w, θ1) dπθ(θ1)

]
+ Var

[
L(w, θ2) dπθ?(θ2)

]
.

To end the proof of Lemma 2.9 (page 20), it is enough now to use the fact
that for any h ∈ L1(P), with probability at least 1− ε∫

log
[
1 + h(w)

]
dP(w) ≤ log

[
1 +

∫
h(w) dP(w)

]
+

log(ε−1)

n

≤
∫
h(w) dP(w) +

log(ε−1)

n
.

�

Proposition 2.11 Let us consider some pseudo-estimator θ̃ ∈ Θ? such that

r̃λ(θ̃, θ?) = inf
θ∈Θ?

r̃λ(θ, θ?)

and any estimator θ̂ such that

sup
θ′∈Θ?

r̃λ(θ̂, θ
′) ≤ inf

θ∈Θ?

sup
θ′∈Θ?

r̃λ(θ, θ
′) + ζ.

For any D ∈ R+, with probability at least 1− 2ε, as soon as

max
{
R′(θ̂, θ?), R

′(θ̃, θ?)
}
≤ D2, (13)

R′(θ̂, θ?) ≤
(

1− aDλ

2
− pD
nλ

)−1
(

sup
θ′∈Θ?

r̃λ(θ̂, θ
′)

+
λbD

2
+
qD + log(ε−1)

nλ
+ ηD + ξ

)

and R′(θ̂, θ?) +R′(θ̃, θ?) ≤
(

1− aDλ

2
− pD
nλ

)−1
(
bDλ+

2
[
qD + log(ε−1)

]
nλ

+ 2ηD + 2ξ + ζ

)
.

Proof. Combining Lemma 2.9 (page 20) with Corollary 2.7 (page 19), we
obtain with probability at least 1− 2ε that for any θ ∈ Θ? such that

R′(θ, θ?) ≤ D2,

R′(θ, θ?) ≤
(

1− λaD
2
− pD
nλ

)−1
(
r̃λ(θ, θ?) +

λbD
2

+
qD + log(ε−1)

nλ
+ ηD + ξ

)
.

The end of the proof is the same as in Proposition 2.8 (page 19). �
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2.4 The example of linear least square regression 23

2.4. The example of linear least square regression. Let us ap-
ply the previous propositions to the case where w = (x, y) ∈ Rd × R, and

L(w, θ) =
(
〈θ, x〉 − y

)2
. It is representative of the local behaviour of any

smooth loss function and explicit computations can be performed. Let us
work with Gaussian perturbations, choosing as reference measure the Gaus-
sian centered measure

dπ

dθ
(θ) =

(
β

2π

)d/2
exp
(
−β‖θ‖2/2

)
.

Let us assume that

∫
y4 dP(y) < +∞ and

∫
‖x‖4 dP(x) < +∞. Let us also

assume that Θ? is a closed convex set and that R(θ?) = inf{R(θ), θ ∈ Θ?}.

Exercise 4 Show that

R′(θ, θ?) ≥
∫
〈θ − θ?, x〉2 dP(x), θ ∈ Θ?,

R(πθ) = R(θ) + β−1

∫
‖x‖2 dP(x), θ ∈ Rd,

so that R′(πθ, πθ?) = R′(θ, θ?) and we can take ξ = 0.

Let us also recall that

K(πθ, πθ?) =
β

2
‖θ − θ?‖2.

Let us now compute legitimate values for aD and bD.

(L′)2(P, πθ, πθ?) =

∫ [
〈θ1 − θ0, x〉2

+ 2〈θ1 − θ0, x〉
(
〈θ0, x〉 − y

)]2

dπθ(θ1) dπθ?(θ0) dP(x, y)

≤
∫ [

2〈θ1 − θ0, x〉4

+ 8〈θ1 − θ0, x〉2
(
〈θ0, x〉 − y

)2
dπθ(θ1) dπθ?(θ0) dP(x, y).

Let us put

g1 = 〈θ1 − θ, x〉, g0 = 〈θ0 − θ?, x〉,
m1 = 〈θ − θ?, x〉, m0 = 〈θ?, x〉 − y.

With these notations
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2.4 The example of linear least square regression 24

∫
〈θ1 − θ0, x〉4 dπθ(θ1) dπθ?(θ0)

= E
[
(g1 − g0 +m1)4

]
= E

[
(g1 − g0)4

]
+ 6E

[
(g1 − g0)2

]
m2

1 +m4
1

=
12‖x‖4

β2
+

12‖x‖2

β
〈θ − θ?, x〉2 + 〈θ − θ?, x〉4,

and∫
〈θ1 − θ0, x〉2

(
〈θ0, x〉 − y

)2
dπθ(θ1) dπθ?(θ0)

= E
[
(g1 − g0 +m1)2(g0 +m0)2

]
= E

{[
(g1 − g0)2 + 2(g1 − g0)m1 +m2

1

][
g2

0 + 2g0m0 +m2
0

]}
= E

[
g4

0 + g2
0g

2
1 + (g1 − g0)2m2

0 − 4g2
0m0m1 +m2

1g
2
0 +m2

1m
2
0

]
≤ 4‖x‖4

β2
+

4‖x‖2

β

(
〈θ?, x〉−y

)2
+

3‖x‖2

β
〈θ−θ?, x〉2+〈θ−θ?, x〉2

(
〈θ?, x〉−y

)2
.

Thus

(L′)2(P, πθ, πθ?) ≤
∫ (

2〈θ − θ?, x〉4 + 8〈θ − θ?, x〉2
(
〈θ?, x〉 − y

)2

+
48‖x‖2

β
〈θ − θ?, x〉2 +

32‖x‖2

β

(
〈θ?, x〉 − y

)2
+

56‖x‖4

β2

)
dP(x, y).

Let us define

κ = sup
θ∈Θ?

∫
〈θ − θ?, x〉4 dP(x)[∫
〈θ − θ?, x〉2 dP(x)

]2 ,
σ2

4 =

√∫ (
〈θ?, x〉 − y

)4
dP(x, y),

s2
4 =

√∫
‖x‖4 dP(x).

assuming all these quantities are finite. We obtain that

(L′)2(P, πθ, πθ?) ≤ aDR
′(θ, θ?) + bD,

where

aD = 8
√
κσ2

4 + 2κD2 +
48
√
κs2

4

β
,
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2.4 The example of linear least square regression 25

bD =
32s2

4

β
σ2

4 +
56s4

4

β2
.

Let us now discuss the simplified criterion. Let us notice first that

L(w, πθ) =

∫ (
〈θ′, x〉 − y

)2
dπθ(θ

′) =
(
〈θ, x〉 − y

)2
+
‖x‖2

β
,

so that
L′(w, πθ, πθ′) = L′(w, θ, θ′)

and

r̃λ(θ, θ
′) = λ−1

∫
ψ
{
λ
[(
〈θ, x〉 − y

)2 −
(
〈θ′, x〉 − y

)2
]}

dP(x, y).

As the criterion r̃λ which serves to compute our estimator θ̂ requires only
to compute scalar products of the form 〈θ, x〉, we are entitled to make in
the previous computations any change of representation which preserves this
scalar product. We can thus consider the Gram matrix

G =

∫
xxt dP(x),

and make the change of representation (x, θ) 7→ (G−1/2x,G1/2θ). If G is not
invertible, we can restrict X and Θ to the linear subspace generated by the
eigenvectors of G with non zero eigenvalues, since X1, . . . , Xn almost surely
belong to this subspace. Therefore we can assume without loss of generality
that G is the identity, because this becomes true after we restrict the space
and make the proposed change of representation. Now that we made this
change of representation and assume that G = Id, we have∫

‖x‖2 dP(x) = d,

K(πθ, πθ?) =
β

2
‖θ − θ?‖2 =

β

2

∫
〈θ − θ?, x〉2 dP(x)

≤ β

2
R′(θ, θ?),

so that we can take pD =
β

2
, and qD = 0.

Let us now compute ηD. The variance of the sum of two uncorrelated random
variable being the sum of their variances,

Var
[
L(w, θ′) dπθ(θ

′)
]

= Var
{[
〈θ′ − θ, x〉2 + 2〈θ − θ′, x〉

(
〈θ, x〉 − y

)]
dπθ(θ

′)
}
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= Var
[
〈θ′ − θ, x〉2 dπθ(θ

′)
]

+ 4
(
〈θ, x〉 − y

)2
Var

[
〈θ′ − θ, x〉 dπθ(θ′)

]
=

2‖x‖4

β2
+ 4
(
〈θ, x〉 − y

)2‖x‖2

β

≤ 2‖x‖4

β2
+ 8
(
〈θ?, x〉 − y

)2‖x‖2

β
+ 8〈θ − θ?, x〉2

‖x‖2

β

≤ 8
(
〈θ?, x〉 − y

)2‖x‖2

β
+ 8D2‖x‖4

β
+

2‖x‖4

β2
.

Thus we can take

ηD = cλ

[
12s2

4σ
2
4

β
+

(
8D2

β
+

4

β2

)
s4

4

]
+

log(ε−1)

nλ
.

Proposition 2.12 With probability at least 1− 2ε, as soon as

max
{
R′(θ̂, θ?), R

′(θ̃, θ?)
}
≤ D2,

R′(θ̂, θ?) +R′(θ̃, θ?) ≤
(

1− aDλ

2
− β

2nλ

)−1(
bλ+

2 log(ε−1)

nλ
+ 2ηD + ζ

)
,

where

aD = 8
√
κσ2

4 + 2κD2 +
48
√
κs2

4

β
,

b =
32s2

4σ
2
4

β
+

56s4
4

β2
,

ηD = cλ

[
12s2

4σ
2
4

β
+

(
8D2

β
+

4

β2

)
s4

4

]
+

log(ε−1)

nλ
.

Let us put
∆ = sup

{
‖θ − θ′‖ : (θ, θ′) ∈ Θ2

?

}
,

and let us take

λ−1 = 8
(
4
√
κσ2

4 + κ∆2
)
,

β−1 =
4

nλ
.

Corollary 2.13 For any n such that

n ≥ 27× 3
√
κ s2

4,
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for any D ∈ R+, with probability at least 1− 2ε, as soon as

max
{
R′(θ̂, θ?), R

′(θ̃, θ?)
}
≤ D2,

R′(θ̂, θ?) +R′(θ̃, θ?) ≤ 26(4 + 3c)
s2

4σ
2
4

n
+ 26
√
κ
(

4σ2
4 +
√
κ∆2

) log(ε−1)

n

+ 211(7 + c)
√
κ
(
4σ2

4 +
√
κ∆2

) s4
4

n2
+

27c s4
4D

2

n
+ 2ζ.

Starting with D = ∆ and applying the above corollary twice we obtain

Proposition 2.14 For any n such that

n ≥ 27× 3
√
κ s2

4,

with probability at least 1− ε,

R′(θ̂, θ?) ≤
[
B1 s

2
4 +B2

√
κ log

(
4/ε
)]
σ2

4

n
+
B3 κ log(4/ε)∆2

n
+B4 ζ,

where

B1 =

(
1 +

27cs4
4

n

)[
28 + 26×3 c+ 211(7 + c)

√
κ

(
4 +
√
κ

∆2

σ2
4

)
s2

4

n

]

+
214c2s6

4∆2

nσ2
4

,

B2 = 28

(
1 +

27c s4
4

n

)
,

B3 = 26

(
1 +

27c s4
4

n

)
,

B4 = 2

(
1 +

27c s4
4

n

)
.

Exercise 5 Deduce from the previous proposition that∫
R′(θ̂, θ?) dP⊗n ≤

[
B1 s

2
4 +B2

√
κ
(
1 + log(4)

)]
σ2

4

n

+
B3 κ

(
1 + log(4)

)
∆2

n
+B4 ζ.
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2.4 The example of linear least square regression 28

Let us remark that the order of magnitude of the bound depends on the
values of σ2

4, which measures the size of the noise, ∆, which measures the
size of the target parameter set Θ?, and of two remaining quantities, s2

4 and
κ, which are linked with the dimension d.

Indeed, in any case

s2
4 ≥

∫
‖x‖2 dP(x) = d.

Let us give more precisions in some special cases.

1. The distribution of x under P is a multivariate Gaussian measure. In
this case, it is still so after the linear change of representation we used
to turn the Gram matrix into the identity matrix. Thus in this case

s4
4 =

∫
‖x‖4 dP(x) =

∫ ( d∑
i=1

x2
i

)2

dP(x)

=
d∑
i=1

∫
x4
i dP(x) + 2

∑
1≤i<j≤d

∫
x2
ix

2
j dP(x)

= 3d+ d(d− 1) = d2 + 2d,

so that s2
4 = d

√
1 + 2/d. Moreover, 〈θ, x〉 is Gaussian under P for any

θ, so that κ = 3 in this case.

2. The distribution of x under P is such that x1 = 1 almost surely and
x2, . . . , xd are independent. In this case, the linear change of represen-
tation made to normalize the Gram matrix will renormalize x2, . . . , xd
independently by substracting their means and making a change of
scale to change their variance to 1, while x1 will remain unchanged.
Let us introduce

χ = max
i=1,...,d

∫
x4
i dP(x)(∫

x2
i dP(x)

)2 .

We get s4
4 ≤ χd+ d(d− 1), so that s2

4 ≤ d
√

1 + (χ− 1)/d.

Let θ be such that ‖θ‖ = 1. As

∫
〈θ, x〉4 dP(x) =

∫ ( d∑
i=1

θ4
i x

4
i + 6

∑
1≤i<j≤d

θ2
i θ

2
jx

2
ix

2
j
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+ 4 θ1

d∑
i=2

θ3
jx1x

3
i

)
dP(x)

≤ χ

d∑
i=1

θ4
i + 6

∑
1≤i<j≤d

θ2
i θ

2
j + 4

√
χ |θ1|

d∑
i=2

|θi|3

= (χ− 3)
d∑
i=1

θ4
i + 3

( d∑
i=1

θ2
i

)2

+ 4
√
χ |θ1|

d∑
i=2

|θi|3

≤ max{χ, 3}+ 4
√
χ sup
p∈[0,1]

p(1− p2)3/2,

κ ≤ max{χ, 3}+
33/2

4

√
χ.

3. The distribution of x under P is almost surely bounded and nearly or-
thogonal. More precisely let us assume that for some positive constants
A and B,

P
(
‖x‖ ≤ B

)
= 1, and sup

θ 6=0

‖θ‖2∫
〈θ, x〉2 dP(x)

≤ A2.

In this situation, κ ≤ A2B2, since∫
〈θ, x〉4 dP(x) ≤ B2‖θ‖2

∫
〈θ, x〉2 dP(x) ≤ A2B2

(∫
〈θ, x〉2 dP(x)

)2

.

Moreover s2
4 ≤ AB

√
d. Indeed,

s4
4 =

∫
sup
θ 6=0

〈θ, x〉4(∫
〈θ, u〉2 dP(u)

)2 dP(x)

≤ A2B2

∫
sup
θ 6=0

〈θ, x〉2∫
〈θ, u〉2 dP(u)

dP(x) = A2B2d.

The condition involving A means that the smallest eigen-value of the
Gram matrix is not smaller than A−2. It is for instance the case if∫

x2
i dP(x) ≥ 1, i = 1, . . . , d,∣∣∣∣∫ xixj dP(x)

∣∣∣∣ ≤ 1− A−2

d− 1
, 1 ≤ i < j ≤ d.
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Let us remark that in this setting, necessarily A2B2 ≥ s4
4/d ≥ d, so

that this cannot yield a bound for κ lower than d. This situation
is met when estimating functions in orthogonal or nearly orthogonal
bases. For instance let us consider the Fourier basis on the unit interval,
defined for any u ∈ [0, 1] as

ϕ0(u) = 1,

ϕ2i−1(u) =
√

2 cos
(
2kπu

)
, 1 ≤ i ≤ r,

ϕ2i(u) =
√

2 sin
(
2kπu

)
, 1 ≤ i ≤ r.

Let dP(x) be the image of the uniform probability measure U on the
unit interval [0, 1], by the map ϕ, so that for any measurable set E ⊂
R2r+1, P(x ∈ E) = U

[
ϕ−1(E)

]
. In this case A = 1, because we have

an orthogonal basis, and B =
√

1 + 2r =
√
d. So in this case we get a

d/n convergence rate.

The same rate can be achieved with localized bases, the most simple
being the even histogram basis, defined as

ϕi(u) =
√
d1
(
u ∈

[
(i− 1)/d, i/d

[)
, u ∈ [0, 1], 1 ≤ i ≤ d.

Setting here again P(x ∈ E) = U
[
Φ−1(E)

]
for any measurable set E,

we obtain as in the previous case that A = 1 and B =
√
d.

3. Ordinary least square estimator

We are going to study in this section the ordinary least square estimator
θ̂ = arg min

θ∈Θ?

L(P, θ), the setting being the same as in the end of the previous

section.
A slight variant of Proposition 2.6 (page 18) is obtained by replacing

R′(πθ, πθ?) with R′(πθ, θ?) and accordingly r′λ(πθ, πθ?) with r′λ(πθ, θ?). We
still obtain with probability at least 1− ε that for any θ ∈ Θ such that(

L′
)2

(P, πθ, θ?) < +∞,

R′(πθ, θ?) ≤ r′λ(πθ, θ?) +
λ

2

(
L′
)2

(P, πθ, θ?) +
K(πθ, πθ?) + log(ε−1)

nλ
.

Moreover it is straightforward to deduce from the properties of ψ that

r′λ(πθ, θ?) ≤ L′(P, πθ, θ?) +
λ

2

(
L′
)2

(P, πθ, θ?).
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Let us introduce the empirical counterparts of σ4, s4 and κ, defined as

σ4
4 =

∫ (
〈θ?, x〉 − y

)4
dP(x, y),

s4
4 =

∫
‖x‖4 dP(x),

κ = sup

{∫
〈θ, x〉4 dP(x), θ ∈ Rd, ‖θ‖ = 1

}
.

Here we assume as in the end of the previous section that we have made the
necessary linear change of variables on θ and x, replacing if necessary (θ, x)
with (G1/2θ,G−1/2x), to turn the Gram matrix into the identity matrix, while
letting the scalar product 〈θ, x〉 unchanged.

(
L′
)2

(w, πθ, θ?) =

∫ [
〈θ′ − θ?, x〉2 + 2〈θ′ − θ?, x〉

(
〈θ?, x〉 − y

)]2
dπθ(θ

′)

≤
∫ [

2〈θ′ − θ + θ − θ?, x〉4 + 8〈θ′ − θ + θ − θ?, x〉2
(
〈θ?, x〉 − y

)2]
dπθ(θ

′)

≤ 6‖x‖4

β2
+

12‖x‖2

β
〈θ − θ?, x〉2 + 2〈θ − θ?, x〉4

+
8‖x‖2

β

(
〈θ?, x〉 − y

)2
+ 8〈θ − θ?, x〉2

(
〈θ?, x〉 − y

)2
.

Thus(
L′
)2

(P, πθ, θ?) ≤ 8‖θ − θ?‖2
√
κσ2

4 + 2‖θ − θ?‖4κ

+
12s2

4

√
κ

β
‖θ − θ?‖2 +

8s2
4σ

2
4

β
+

6s4
4

β2
.

In the same way(
L′
)2

(P, πθ, θ?) ≤ 8‖θ − θ?‖2
√
κσ2

4 + 2‖θ − θ?‖4κ

+
12s2

4

√
κ

β
‖θ − θ?‖2 +

8s2
4σ

2
4

β
+

6s4
4

β2
.

Moreover

R′(πθ, θ?) = L′(P, πθ, θ?) =
d

β
+R′(θ, θ?),

and L′(P, πθ, θ?) =
d

β
+ L′(P, θ, θ?), where

d =

∫
‖x‖2 dP(x).
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Proposition 3.1 With probability at least 1− ε, for any θ ∈ Θ?,

λ(κ+ κ)R′(θ, θ?)
2

−R′(θ, θ?)
{

1− λ
[
4
(
σ2

4

√
κ+ σ2

4

√
κ
)

+
6

β

(
s2

4

√
κ+ s2

4

√
κ
)]
− β

2nλ

}
+

log(ε−1)

nλ
+

4λ

β

(
s2

4σ
2
4 + s2

4σ
2
4

)
+

3λ

β2

(
s4

4 + s4
4

)
+
d− d
β

+ L′(P, θ, θ?) ≥ 0

The random coefficients κ, σ4, s4 and d, according to the weak law of large
numbers, converge to their deterministic counterparts κ, σ4, s4 and d. That it
is the case for κ is not completely straightforward, since its defintion involves
a supremum, but can be seen from the inequality

∣∣κ− κ∣∣ ≤ sup

{∣∣∣∣( d∑
i=1

θixi

)4

d(P− P)(x)

∣∣∣∣, θ ∈ Rd, ‖θ‖ = 1

}

≤ sup

{ ∑
α∈NJ1,d K,
|α|=4

|α|!∏d
i=1 αi!

d∏
i=1

|θi|αi

∣∣∣∣∫ d∏
i=1

xαi
i d
(
P− P

)
(x)

∣∣∣∣, θ ∈ Rd, ‖θ‖ = 1

}

≤ sup

{( d∑
i=1

|θi|
)4

, θ ∈ Rd, ‖θ‖ = 1

}

×max

{∣∣∣∣∫ d∏
i=1

xαi
i d
(
P− P

)
(x)

∣∣∣∣, α ∈ NJ1,d K, |α| = 4

}

≤ d2 max

{∣∣∣∣∫ d∏
i=1

xαi
i d
(
P− P

)
(x)

∣∣∣∣, α ∈ NJ1,d K, |α| = 4

}
.

Here J1, d K def
= [1, d] ∩ N is an integer interval and |α| =

∑d
i=1 αi. Thus the

weak law of large numbers applied to each term of the last maximum shows
that

lim
n→+∞

P⊗n
{
|κ− κ| ≥ η

}
= 0, η ∈ R∗+.

Thus, putting

m =
1

2
max

{
σ2

4

√
κ− σ2

4

√
κ, s2

4

√
κ− s2

4

√
κ,

κ− κ, s2
4σ

2
4 − s2

4σ
2
4, s

4
4 − s4

4, d− d
}
,

we see that for any η > 0,

lim
n→+∞

P⊗n
(
m ≥ η

)
= 0.
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Choosing, for some small enough value of η > 0,

λ =
1

32
(
σ2

4

√
κ+ η

) ,
β =

nλ

3
,

we see that

Proposition 3.2 There is some integer N such that for any n ≥ N and
any ε > 0, with probability at least 1− ε, for any θ ∈ Θ?,

aR′(θ, θ?)
2 − 1

2
R′(θ, θ?) + c+ L′(P, θ, θ?) ≥ 0,

where

a =

√
κ

15σ2
4

,

c =

[
25s2

4 + 33
√
κ log(ε−1)

]
σ2

4

n
.

Let θ̂ be the ordinary least square estimator on Θ?, defined by the equation

L(P, θ̂) = inf
{
L(P, θ); θ ∈ Θ?

}
,

so that L′(P, θ̂, θ?) ≤ 0. Let us consider the discriminant ∆ = 1/4 − 4ac of
the quadratic equation ax2 − x/2 + c = 0 and let us assume that ∆ > 0, or
equivalently that

n >
16
√
κ

15

[
25s2

4 + 33
√
κ log(ε−1)

]
.

Let us consider θ̃ ∈ Θ? satisfying

R′(θ̃, θ?) ≤
1

4a
and

L(P, θ̃) = inf

{
L(P, θ); θ ∈ Θ?, R

′(θ, θ?) ≤
1

4a

}
.

We see from the previous proposition that R′(θ̃, θ?) ≤
1

4a
− ∆

2a
. Let us now

consider for any α ∈ [0, 1],

θ̃α = (1− α)θ̃ + αθ̂.

April 2, 2012 Olivier Catoni



34

From the convexity of θ 7→ L(P, θ), we deduce that

L(P, θ̃α) ≤ (1− α)L(P, θ̃) + αL(P, θ̂) ≤ L(P, θ?).

Thus eitherR′(θ̃α, θ?) ≤
1

4a
−
√

∆

2a
orR′(θ̃α, θ?) ≥

1

4a
+

√
∆

2a
. SinceR′(θ̃0, θ?) ≤

1

4a
−
√

∆

2a
and α 7→ R′(θ̃α, θ?) is continuous, this proves that R′(θ̃1, θ?) ≤

1

4a
− ∆

2a
. As θ̃1 = θ̂, we have proved the following proposition.

Proposition 3.3 There is some N (depending on P) such that for any
n ≥ N and ε ∈]0, 1] such that

n >
16
√
κ

15

[
25s2

4 + 33
√
κ log(ε−1)

]
,

with probability according to the sample distribution P⊗n at least 1− ε,

R′(θ̂, θ?) ≤
4
[
25s2

4 + 33
√
κ log(ε−1)

]
σ2

4

n
.

Proof. Since
√

∆ =

√
1− 16ac

2
≥ 1− 16ac

2
,

1

4a
−
√

∆

2a
≤ 4c. �

Exercise 6 (Another set of hypotheses) Let us put

σ2
2 = ess sup

dP(x)

∫ (
〈θ?, x〉 − y

)2
dP(y |x).

Show that there is N such that for any n > N and ε ∈]0, 1] such that

n >
16κ

15

[
25d+ 33 log(ε−1)

]
,

with probability at least 1− ε,

R′(θ̂, θ?) ≤
4
[
25d+ 33 log(ε−1)

]
σ2

2

n
.

Thus, asymptotically, we obtain a
d

n
rate of convergence in this situation,

under the only assumptions that

ess sup
dP(x)

∫ (
〈θ?, x〉 − y

)2
dP(y |x) < +∞,

and

∫
‖x‖4 dP(x) < +∞.
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Exercise 7 Let us make the same hypotheses as in the previous exercise,
and consider now the estimator θ̂ of Proposition 2.11 (page 22). Let us take

λ−1 = 8
(
4σ2

2 + κ∆2
)

and
λ

β
=

4

n
,

and let us assume that
n ≥ 27× 3

√
κ s2

4.

Show that with probability at least 1− ε,

R′(θ̂, θ?) ≤
[
B1d+B2 log(4/ε)

]
σ2

2

n
+
B3κ log(4/ε)∆2

n
+B4ζ,

where

B1 =

(
1 +

27cs4
4

n

)[
28 + 26 × 3 c+ 211(7 + c)

(
4 +

κ∆2

σ2
2

)
s4

4

dn

]
+

214c2s6
4∆2

nσ2
2

,

and the other constants are as in Proposition 2.14 (page 27).
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