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Clustering a probability measure
A Markov chain approach

Consider a separable Hilbert space 2, the family of kernels

Ag(z,y) =exp(-Bllz—y|?), =z,y€2,

and a probability measure P € .} (.2"), with compact support
SUPP(P)

Let pg(z) = [ Ag(z,y)dP(y), Ms(z,y) = pg(z) ' As(,y),
consider the Markov chain Z,,, m € IN with transitions

d
@PZm+1\Z,n:z(y) = Mﬁ(l‘, y)v m € NN,

. . . .. d
and the invariant measure Q with density d—g(x) = pg(z).
Define the representation

R(a) = 3gPiz0mr €LAQ), 2 € supp(P),



Clustering a probability measure
A Markov chain approach

and the kernel
Remark that, since u(y)M (y,z) = u(z)M(z,y),

d d
K (z,y) :/dQIPZmZozz(z)dQIPng|Zm=z(y)dQ(z)

d
dQ Z27n|ZO I(y)



Cycle decomposition

Let 97 = {(z,y) € supp(P)?; ||y —z|| < T} and let €r be the
connected components of ¥rp.

Conjecture : hm Kexp(ﬁTz)(ac,y) = > Q) "1({z,y}cO).
Ceér

(True when supp(P) is finite.)
Consequence : putting
Hy(2,y) = Kp(2,2) 72K (2, ) K (y,y) "2,

hm Hexp(ﬂTz = > 1({z,y}cC).
Cebr

For suitable values of 8 and m, the kernel H,, should define a
RKHS in which the points of supp(P) are clustered around the
vertices of a simplex.



Link with Gram operators

Consider the symmetric Laplacian kernel
L(z,y) = w(z)~ Y2 A(z,y)pu(y)~Y/? and the representation ¢4 in
the RKSH 7 defined by the kernel A, so that

(pa(z),0a(y))r = A(z,y), =,y €supp(P).

Define the representation ¢y, : supp(P) — 7 as
br(z) = p(z)"Y2p4(x). Tt satisfies

(61(2),61())r = Lla.v)
Introduce the Gram operator of Po¢; ' € .4} (#) defined as
G H
s 9(0) = [(0,00(0)) e ou()AP(y)



Link with Gram operators

Remark that

d d
Km(‘r7y) dQ ZQ n‘ZO x(y) :lu(y) 1dP]PZ2m|ZO !I)(y)
/M :C 21 ng 1, y)dP(zl)...dP(ZQm_l)
1/2 1/2/L T Zl ng 1, y)dP(zl) dP(ZQm_l)

= ()" Puly) G (00()), 61(9))
= () uly) NS (Da(@)),04(Y))

(ps(),05(y))
o5 (2) ||z llos ()l e’

where ¢g(z) = 4™ Y/2(¢4(x)).

Therefore Hy,(z,y) =

z,y € supp(P),



Clustering a statistical sample

Let Xi,..., X, be n independent copies of X ~ P. Consider
some estimator ¢4 of ¢, and the clustering algorithm based on

B (5.q) = (95(2).05(1)
T lgs (@) Lelles (v) e

where

o~

bs(2) =GV (ga(x)).

|(Bs(2), 65 (1) — (85(2), D5 ()| < |92 L —g> 1|

~ ~ 2m—2
<em-1|9-9] . (1+]9-9]..)



Comparison with the algorithm of Ng, Jordan, and
Weiss

Consider the plugging estimator 4 obtained by replacing P with
the empirical measure - Zz 10x,. We get

n n -1
)= 3 (5 AXK)) (104X 0 (Xo),

LN L)

therefore, considering the vector D; = Y1 A(X;, X;) and the
n x n matrices 4, ; = A(X;,X;), and L; ; = D, 1/2 A”D_l/2



Comparison with the algorithm of Ng, Jordan, and
Weiss

we obtain

("1 9a(X0),04(X)r = DT D},
Hm(XZ,X])Z(L2m> 1/2L2m<L2m) 1/2

272 7.7 ]7] ’

whereas the Ng, Jordan and Weiss algorithm can be described
as based on the scalar product

= :—1/2: :—1/2
H(Xian) - Li,i IR I I
where, if we decompose L= Udiag(\1,...,\,) UT, and
introduce the orthogonal projection II,. on the r first
coordinates of R, L= UIL, U .



Comparison with the algorithm of Ng, Jordan, and
Weiss

Therefore, to derive our algorithm from the N. J. & W.
algorithm, we have to replace the hard cut-off II,. by the smooth
cut-off diag(A2™,...,A2™) that does not assume that the
number of classes 7 is known in advance. (Another minor

difference is that N. J. & W. take 4, ; =0.)



Convergence bounds

Introduce

n

fé(u) = %ZM(Xi)_l<U,¢A(Xi)>jf¢A(Xi)

=1

and x(z) = ggi; —1, where f(z) = %ZA(IL‘,XZ'). As
i=1

19 =D < (L+119 = Z o) Xl oc

19 = oo <19 = Floo (1+ lxlIo0) + [1XlIoo-



Convergence bounds

Let ¢ 412 : supp(P) — 7] /5 be the feature map defined by the
kernel A(z,y)Y/2. We see that

pl@) = [ (Ga2(0). 0002 (1), 4P()
= G12(0.402(2)) 6 02(0) 1 o

where

Do) = [ (00002 (1) 8012 () AP (y),

so that the estimation of p(z) can be deduced from the
estimation of the Gram operator ¥4 ;.



Convergence bounds

Let JZ be some separable Hilbert space, Z € J# some random
variable, and Z1,..., 7, a sample made of n independent copies

of 7.
Let sup{E((G,Z>4);0 c A E((0,2)%) < 1} < Kk < 00,
_ 100E(]|Z||?)
~ n/128 —4.35 —log(e~1)’
(1) = 0.86 max{|| Z;||4} (0.73 E(|Z)?)
n(k—1)max{t,o}?

C(t) = \/2.04(H— 1) (MBE(”Z”Z) +4.35+10g(6_1))

max{t,o}

+4.35+ log(e_l)) ,

98.5kI(]| Z||2)

max{t,o} ’

n~12¢(t)
Bt)=1 —An12¢(t)



Convergence bounds

— 1&
Let E((0,2)) =~ (0,Z;)%.
tB(0.2)) =, 00.%)
With probability at least 1 — 2¢, for any 6 € J# such that
HQH =1,

max{c, E((0, Z)?)}
max{o,E((0,Z)?)}




Convergence bounds

Let us consider the Gram operator ¢ (u) = E((u,Z)Z) and its

empirical estimate & (u) = Ly (u, >Z Wi th probablhty at
least 1 — 2e,

19~ % |oo < 19|00 B(|Z]|00)

+ inf
o>0

Remarking that inf,cgpp(p) p1(7) > o for n large enough, that
lps(z)||» > p(z) and putting everything together gives, for any
fixed values of 8 and m, a finite sample deviation bound in
n~=3 for
sup Hm(xvy)_Hm(z7y)"
z,y€supp(P)



Choice of the scale parameter (3

We can choose 8 by fixing the value of

/Aﬂzy )*dP(z)dP(y ZA

— 1
estimated by F(5) = PTEY) Z Ap(Xi, X;)%
1<i<j<n

where A1 > Ao > --- are the eigenvalues of the principal
component analysis of ¢4(z), that is the eigenvalues of the
Gram operator u — E[(u,¢4(X))pa(X)]. Remark that \;
defines a probability measure on the eigenvectors, since

Y i =E(Ag(z,z)) =1, so that F(3) controls the spread of
this distribution, that is the spread of the initial representation
¢a(X) other different directions of the Hilbert space .



Choice of the number of iterations m

To choose the number of iterations m in practice, assuming that
we know an upper bound r of the number of classes, we may fix

the ratio )
()"

where this time, \; are the eigenvalues of the estimate of the
Gram operator u — E[(u,¢r(X))¢r(X)]. In the following
simulations, we took p=1/100, and the result does not seem to
be very sensitive to the precise value of p, as long as it is small.

We get
_ | log(ph)
m = .
2log(A/Ars1)




Examples of simulations
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Examples of simulations

Eigenvalues of the Gram matr
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Examples of simulations

Eigenvalues of the Gram matrix
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Examples of simulations
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