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Clustering a probability measure
A Markov chain approach

Consider a separable Hilbert space X , the family of kernels

Aβ(x ,y) = exp
(
−β‖x −y‖2

)
, x ,y ∈X ,

and a probability measure P ∈M 1
+(X ), with compact support

supp(P).
Let µβ(x ) =

∫
Aβ(x ,y)dP(y), Mβ(x ,y) = µβ(x )−1Aβ(x ,y),

consider the Markov chain Zm , m ∈N with transitions

d

dP
PZm+1|Zm=x (y) = Mβ(x ,y), m ∈N,

and the invariant measure Q with density dQ
dP (x ) = µβ(x ).

Define the representation

R(x ) = d

dQ
PZm |Z0=x ∈ L2(Q), x ∈ supp(P).



Clustering a probability measure
A Markov chain approach

and the kernel

Km(x ,y) = 〈R(x ),R(y)〉L2(Q).

Remark that, since µ(y)M (y ,z ) = µ(z )M (z ,y),

Km(x ,y) =
∫

d

dQ
PZm |Z0=x (z ) d

dQ
PZ2m |Zm=z (y)dQ(z )

= d

dQ
PZ2m |Z0=x (y).



Cycle decomposition

Let GT =
{
(x ,y) ∈ supp(P)2;‖y−x‖< T

}
and let CT be the

connected components of GT .

Conjecture : lim
β→∞

Kexp(βT2)(x ,y) =
∑

C∈CT

Q(C )−11
(
{x ,y} ⊂ C

)
.

(True when supp(P) is finite.)
Consequence : putting
Hm(x ,y) = Km(x ,x )−1/2Km(x ,y)Km(y ,y)−1/2,

lim
β→∞

Hexp(βT2)(x ,y) =
∑

C∈CT

1
(
{x ,y} ⊂ C

)
.

For suitable values of β and m, the kernel Hm should define a
RKHS in which the points of supp(P) are clustered around the
vertices of a simplex.



Link with Gram operators

Consider the symmetric Laplacian kernel
L(x ,y) = µ(x )−1/2A(x ,y)µ(y)−1/2 and the representation φA in
the RKSH H defined by the kernel A, so that

〈φA(x ),φA(y)〉H = A(x ,y), x ,y ∈ supp(P).

Define the representation φL : supp(P)−→H as
φL(x ) = µ(x )−1/2φA(x ). It satisfies

〈φL(x ),φL(y)〉H = L(x ,y).

Introduce the Gram operator of P◦φ−1L ∈M 1
+(H ) defined as

G :H →H

u 7→ G (u) =
∫
〈u,φL(y)〉H φL(y)dP(y)



Link with Gram operators

Remark that

Km(x ,y) = d

dQ
PZ2m |Z0=x (y) = µ(y)−1 d

dP
PZ2m |Z0=x (y)

= µ(y)−1
∫

M (x ,z1) · · ·M (z2m−1,y)dP(z1) . . .dP(z2m−1)

= µ(x )−1/2µ(y)−1/2
∫

L(x ,z1) · · ·L(z2m−1,y)dP(z1) . . .dP(z2m−1)

= µ(x )−1/2µ(y)−1/2
〈
G 2m−1(φL(x )

)
,φL(y)

〉
H

= µ(x )−1µ(y)−1
〈
G 2m−1(φA(x )

)
,φA(y)

〉
H

Therefore Hm(x ,y) = 〈φS (x ),φS (y)〉H
‖φS (x )‖H ‖φS (y)‖H

, x ,y ∈ supp(P),

where φS (x ) = G (2m−1)/2(φA(x )
)
.



Clustering a statistical sample

Let X1, . . . ,Xn be n independent copies of X ∼ P. Consider
some estimator Ĝ of G , and the clustering algorithm based on

Ĥm(x ,y) =
〈
φ̂S (x ), φ̂S (y)

〉
H

‖φ̂S (x )‖H ‖φ̂S (y)‖H

where
φ̂S (x ) = Ĝ (2m−1)/2(φA(x )

)
.

∣∣∣〈φ̂S (x ), φ̂S (y)〉H −〈φS (x ),φS (y)〉
∣∣∣≤ ∥∥Ĝ 2m−1−G 2m−1∥∥

∞

≤ (2m−1)
∥∥Ĝ −G

∥∥
∞

(
1+

∥∥Ĝ −G
∥∥
∞

)2m−2



Comparison with the algorithm of Ng, Jordan, and
Weiss

Consider the plugging estimator Ĝ obtained by replacing P with
the empirical measure 1

n

∑n
i=1 δXi . We get

Ĝ (u) = 1

n

n∑
i=1

(
1

n

n∑
j=1

A(Xi ,Xj )
)−1
〈u,φA(Xi)〉H φA(Xi),

therefore, considering the vector D i =
∑n

i=1A(Xi ,Xj ) and the

n×n matrices Ai ,j = A(Xi ,Xj ), and Li ,j = D
−1/2
i Ai ,jD

−1/2
j ,



Comparison with the algorithm of Ng, Jordan, and
Weiss

we obtain

〈Ĝ 2m−1φA(Xi),φA(Xj )〉H = D
1/2
i L

2m
i ,j D

1/2
j ,

Ĥm(Xi ,Xj ) =
(
L
2m
i ,i

)−1/2
L
2m
i ,j

(
L
2m
j ,j

)−1/2
,

whereas the Ng, Jordan and Weiss algorithm can be described
as based on the scalar product

̂̂
H (Xi ,Xj ) = L

−1/2
i ,i Li ,jL

−1/2
j ,j ,

where, if we decompose L = U diag(λ1, . . . ,λn)U>, and
introduce the orthogonal projection Πr on the r first
coordinates of Rn , L = UΠrU

>.



Comparison with the algorithm of Ng, Jordan, and
Weiss

Therefore, to derive our algorithm from the N. J. & W.
algorithm, we have to replace the hard cut-off Πr by the smooth
cut-off diag(λ2m1 , . . . ,λ2mn ) that does not assume that the
number of classes r is known in advance. (Another minor
difference is that N. J. & W. take Ai ,i = 0.)



Convergence bounds

Introduce

ˆ̂
G (u) = 1

n

n∑
i=1

µ(Xi)−1〈u,φA(Xi)〉H φA(Xi)

and χ(x ) = µ(x )
µ̂(x ) −1, where µ̂(x ) = 1

n

n∑
i=1

A(x ,Xi). As

‖Ĝ − ˆ̂
G ‖∞ ≤

(
1 +‖ ˆ̂

G −G ‖∞
)
‖χ‖∞,

‖Ĝ −G ‖∞ ≤ ‖ ˆ̂
G −G ‖∞

(
1+‖χ‖∞

)
+‖χ‖∞.



Convergence bounds

Let φA1/2 : supp(P)−→H1/2 be the feature map defined by the

kernel A(x ,y)1/2. We see that

µ(x ) =
∫
〈φA1/2(x ),φA1/2(y)〉2H1/2

dP(y)

= 〈G1/2

(
φA1/2(x )

)
,φA1/2(x )〉H1/2

,

where

G1/2(u) =
∫
〈u,φA1/2(y)〉φA1/2(y)dP(y),

so that the estimation of µ(x ) can be deduced from the
estimation of the Gram operator G1/2.



Convergence bounds

Let H be some separable Hilbert space, Z ∈H some random
variable, and Z1, . . . ,Zn a sample made of n independent copies
of Z .

Let sup
{
E
(
〈θ,Z 〉4

)
;θ ∈H ,E

(
〈θ,Z 〉2

)
≤ 1

}
≤ κ <∞,

σ = 100κE(‖Z‖2)
n/128−4.35− log(ε−1) ,

τ(t) = 0.86max{‖Zi‖4}
n(κ−1)max{t ,σ}2

(
0.73 E(‖Z‖2)

t
+4.35+ log(ε−1)

)
,

ζ(t) =
√

2.04(κ−1)
(

0.73E(‖Z‖2)
max{t ,σ}

+4.35+ log(ε−1)
)

+
√

98.5κE(‖Z‖2)
max{t ,σ}

,

B(t) = n−1/2ζ(t)
1−4n−1/2ζ(t)



Convergence bounds

Let E
(
〈θ,Z 〉2

)
= 1

n

n∑
i=1

〈θ,Zi〉2.

With probability at least 1−2ε, for any θ ∈H such that
‖θ‖= 1,

∣∣∣∣max{σ,E
(
〈θ,Z 〉2

)
}

max{σ,E
(
〈θ,Z 〉2

)
}
−1

∣∣∣∣≤ B
(
E
(
〈θ,X 〉2

))

+
τ
(
E
(
〈θ,Z 〉2

))
[
1− τ

(
E
(
〈θ,Z 〉2

))]
+

[
1−B

(
E
(
〈θ,X 〉2

))]
+

.



Convergence bounds

Let us consider the Gram operator G (u) = E
(
〈u,Z 〉Z

)
and its

empirical estimate Ĝ (u) = 1
n

∑n
i=1〈u,Zi〉Zi . With probability at

least 1−2ε,

‖Ĝ −G ‖∞ ≤ ‖G ‖∞B(‖G ‖∞)

+ inf
σ>0

[
στ(σ)[

1− τ(σ)
]
+
[
1−B(σ)

]
+

+σ

]
.

Remarking that infx∈supp(P)µ(x )≥ σ for n large enough, that
‖φS (x )‖H ≥ µ(x ) and putting everything together gives, for any
fixed values of β and m, a finite sample deviation bound in
n−1/3 for

sup
x ,y∈supp(P)

∣∣∣Ĥm(x ,y)−Hm(x ,y)
∣∣∣.



Choice of the scale parameter β

We can choose β by fixing the value of

F (β) =
∫

Aβ(x ,y)2dP(x )dP(y) =
∞∑
i=1

λ2i ,

estimated by F (β) = 1

n(n−1)
∑

1≤i<j≤n
Aβ(Xi ,Xj )2.

where λ1 ≥ λ2 ≥ ·· · are the eigenvalues of the principal
component analysis of φA(x ), that is the eigenvalues of the
Gram operator u 7→ E

[
〈u,φA(X )〉φA(X )

]
. Remark that λi

defines a probability measure on the eigenvectors, since∑∞
i=1λi = E

(
Aβ(x ,x )

)
= 1, so that F (β) controls the spread of

this distribution, that is the spread of the initial representation
φA(X ) other different directions of the Hilbert space H .



Choice of the number of iterations m

To choose the number of iterations m in practice, assuming that
we know an upper bound r of the number of classes, we may fix
the ratio

ρ=
(
λr+1

λ1

)2m

where this time, λi are the eigenvalues of the estimate of the
Gram operator u 7→ E

[
〈u,φL(X )〉φL(X )

]
. In the following

simulations, we took ρ= 1/100, and the result does not seem to
be very sensitive to the precise value of ρ, as long as it is small.
We get

m =
⌈

log(ρ−1)
2log(λ1/λr+1)

⌉
.



Examples of simulations
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Examples of simulations
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Examples of simulations
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Examples of simulations
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