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Toric grammars in action

A training sample:

[0 He is a clever guy .

[0 He is doing some shopping .

[0 He is laughing .

[0 He is not interested in sports .
[0 He is walking .

[0 He likes to walk in the streets .
[0 I am driving a car .

[0 T am riding a horse too .

[0 I am running .

[0 Paul is crossing the street .

[0 Paul is driving a car .

[0 Paul is riding a horse .

[0 Paul is walking .

[0 Peter is walking .

[0 While I was walking , I saw Paul crossing the street .
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The estimated toric grammar:

10 [0 He likes to walk ]6 13 streets .

[0 11 18 clever guy .

[0 ]1 doing some shopping .

[0 11 laughing .

11 not interested ]6 sports .
[0 ]J1 riding ]8 horse .

[0 11 riding ]8 horse ]2 .

[0 J1 running .

24 [0 17 am 15 .

28 [0 Paul is ]5 .

40 [0 He is 15 .

[0 J1 crossing 13 street .

[0 11 driving 18 car .

[0 14 is 15 .

[0 ]1 walking .

[0 Peter is 15 .

[0 While 17 was 15 , 17 saw 14 15 .
10 [1 He is

2 [1 Peter is
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2 [1 While ]7 was 15 , 17 saw 14
6 [1 17 am

8 [1 Paul is

2 [2 too

30 [3 the

14 [4 Paul

1 [4 Peter

16 [56 crossing 13 street

16 [5 driving 18 car

16 [6 riding 18 horse

34 [5 walking

[5 15 too

[5 18 clever guy

[5 doing some shopping

[5 laughing

[5 not interested ]6 sports
[5 running

20 [6 in

50 [7 I

50 [8 a

0 00 00 0 0



New sentences discovered:
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Paul is driving a car too .
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doing some shopping .
laughing .

riding a horse too .
running too

running .

not interested in sports too .

not interested in sports
a clever guy too .

a clever guy .
walking too

driving a car too .
driving a car .

doing some shopping .
laughing .

riding a horse too .
riding a horse .
running too .

running .

not interested in sports .
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Peter is a clever guy .
Peter is crossing the street

He
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He
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He
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driving a car too .
driving a car .
riding a horse too .
riding a horse .
running too .
running .

not interested in sports too .

crossing the street too .
crossing the street .
walking too .
driving a car too .
doing some shopping .
laughing too .
laughing .
riding a horse
not interested in sports
a clever guy .
crossing the street too .
crossing the street
walking too .
walking .
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driving a
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driving a
driving a
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car
car
car
car
car
car
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saw
saw
saw
saw
saw
saw

doing some shopping ,
doing some shopping , I saw Paul walking .
laughing too , I saw Peter crossing the street
laughing , I saw Peter riding a horse

riding a horse , I saw Paul driving a car too .
riding a horse , I saw Paul driving a car .
riding a horse , I saw Paul laughing .

Paul doing some shopping too .

Paul doing some shopping .
Paul riding a horse .

Paul crossing the street
Paul walking .

Peter riding a horse

I saw Paul riding a horse .
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riding a horse , I saw Paul running .

riding a horse , I saw Paul walking .

riding a horse , I saw Peter not interested in sports
running , I saw Paul laughing .

running , I saw Paul not interested in sports
running , I saw Paul a clever guy .

running , I saw Paul walking .

not interested in sports , I saw Paul driving a car .
not interested in sports , I saw Paul riding a horse

a clever
a clever
a clever
crossing
crossing
crossing
crossing
crossing
walking ,
walking ,
walking ,
walking ,
walking ,
walking ,
walking ,
walking ,
walking ,

guy
guy
guy
the
the
the
the
the

>

>

>

street
street ,

I saw Paul running .

I saw Paul crossing the street

I saw Paul walking .

saw Paul riding a horse
saw Paul running .

—

I
street , I saw Paul crossing the street
I

street ,

saw Paul walking .

street , I saw Peter walking .

saw
saw
saw
saw
saw
saw
saw
saw
saw

Paul driving a car

Paul laughing .

Paul riding a horse

Paul running .

Paul not interested in sports
Paul crossing the street too
Paul walking .

Peter not interested in sports
Peter walking .



Definition of Markov substitute sets

Let D be a dictionary of words, D" = ) D’ the set of finite
sequences of words and D* = {e}U D™ the set of possibly
empty finite sequences of words.

Let S € D be a random sentence, and (S;,1 <14 < n) a sample
of n independent copies of S.

Given a context T = (71,72) € (D*)?, and an expression y € D+,
we define the insertion operator

a(z,y) =z ym € DT,

that inserts the expression y in the context z.



Definition

A subset B C DT is a Markov substitute set for S when there is
a probability measure gp € .} (B) on B (called the substitute
measure) such that for any context = € (D*)? and any y € B,

P[S=a(z,y)] =P[S € a(z,B)]|qa(y),
where a(z, B) = {a(z,y),y € B}.

In simple words, the conditional distribution of y in context x is
independent of the context z.
Equivalently, for any z,2’ € (D*)?, any y,y’ € B,

Pz ym)Ps(zy ) =Ps(a1y 22)Ps(z) y3).

(The model could be broaden further by imposing restrictive
conditions on the context x.)



Markov chains are a special case of Markov substitute
models

If S=(Z,...,Z1), where (Z;,t € IN) is a Markov chain, then for
any z = (w1, ws) € D2, a(z, D) is a Markov substitute set.

It S=(%4,...,%Z;), where 7 is the first hitting time of C' C D,
then for any z = (71,22) € (D)2, any B C (D\ O)*, a(x,B) is
a Markov substitute set.



Basic properties of Markov substitute sets

Any one point set {y}, y € DT, is a Markov substitute set.

A subset of a Markov substitute set is itself a Markov substitute
set.

If B and C are Markov sets such that BN C # @, BUC is also
a Markov substitute set.

The relation
y~y <= {y,y'} is a Markov substitute pair

is an equivalence relation and DT/ ~ forms a partition of D
into maximal Markov substitute sets.



Basic properties of Markov substitute sets

The set B is Markov if and only if there is a connected
undirected spanning graph ¢4 C B? such that for any (y,y') €9,
{y,y'} is a Markov substitute pair.

If Bj,1 < j </ are Markov substitute sets (including possibly
some one point sets), then

Y(Bi...By)={s=wy1...u0:y; € B;,1 <j </}

is also a Markov substitute set, and
¢

q(y1...y) = Cp H qB;(yj), where Cp is a suitable normalizing
j=1

constant. (The map (y1,y¢) — 41 ... ye may not be one to one, in

which case Cp may be different from one!)



Characterization of Markov substitute sets in terms of
random parsing

Let B C DT be some subset.

Let us define the set of splits of any sentence s € DT as
S (5,B) ={(z,9),z € (D*)*,y € B,a(z,y) = s}.

Let us consider some conditional probability kernel
(m(s;z,y),s € DT,z € (D*)?,y € BU{e}) such that

7 (s,B) Csupp(n(s;-)) C L (s,B)U{((s,€),€)}.

We can for instance take 7(s;z,y) = |7 (s, B)| 7},
(z,y) € 7(s5,B).



Let us define the random B-parse X, Y of the random sentence
S on the same probability space by its conditional distribution

Px y|s=sY)
mi%”(a(‘x’y/)’a%yl)? (x7y)€y(873)7
y'e
)= Y Py yis—s(@y), z=(se)y=e
(z,y")€(s,B)

Lemma

The set B is a Markov substitute set for S if and only if one of
the following equations is true

Px vivep=Pxiven®Py|vesn
J— /
Pxly=y=Pxjy =y WV EB
Pyl x=2,vyeB=Py|ven



Invariant dynamics

Let (Bj,1 <j <t) be a family of Markov substitute sets.

Let us consider a conditional probability kernel (7 (s;z,y,7):s €
Dtz e (D"} 1<j<tye B;U{e}a(z,y) =s).

The kernel (k(s,s’):s,s" € DT), defined as

. ™ S/,ZL',y,,j
Z W(5§$7y,J)QBj(y/) <()/\1), S 7é 8,,

, LEE(D*)2, 7T(57$7y7])
k(s,s") =4 (yy)e(D)2,
1= > k(s,s"), s'=s,

s"€D\{s}

is reversible with respect to Pg.



Proof

Pg(s)k(s,s") = > Pgla(z,B)))
ve(D*)?,
(y,9")E(D*)?,

x g, (y) s, (¥ ) [7(s;2,y,5) A (s 2,4 ,5)



Basic properties of reversible dynamics

If k(y,y") >0, {y,y'} is a Markov substitute pair and
Uy (WR(YY) = qpy3 (YR y)-

For any Markov substitute set B, (including one point sets),

oo
supp (Z qB kt> is a Markov substitute set.
=0

o0

The communicating classes {supp (Z 5skt> ,8 € D+} forms a
t=0

partition of DT into Markov substitute sets.



Basic properties of reversible dynamics

For any domain 2 C D7, the reflected dynamics

k(s,s'), 5,8 €9D,s#5,
ko(s,s") = O s'¢ 7U{s},
1-— Z k(s,s"), otherwise.
s''s

is reversible with respect to Pg.



Test functions

Let us consider a family © of subsets # C (D*)?, containing all
the one point sets {2}, = € (D*)2.

For any pair By, Bo of Markov substitute sets, such that
B1NBy=g. let us put B = By U By and let us consider some
B-parse process (Xp, Yp) and the random variables

FBl,BQ,G(XB7 YBaP)
:]I(XB € 9) [ﬂ(YB €B))—pl(Ype B)], 0ecB,pel0,1].

The set B is a Markov substitute set if and only if there is
p €10,1] such that for any 6 € ©, E[Fp, p, ¢(Xp, Yp,p)] =0. In
this case ¢ (B1) = p.



Test functions

To estimate E[Fp, p,o(XB, YB,p)|, we can simulate from the
sample (S;,1 <i<n) an iid. sample (S;,Xp;, Yp,;) such that

IPXB,i, Y.l Si = ]PXB, Y| g OF We can compute

def
FBl,BQ 9(8 ) = ]E[FBI Ba,0 0(Xs, YBae)‘S:S}

Z Z]l (z€0) m1n7r( (z,9y),z,v")

ze(D yeB
x [L(y € B1)—pl(y € B)|1(s = a(z,y)),

and consider the i.i.d. samples Fg, B, ¢(Si,p).



Alternative test functions

Another choice of test functions is

FBl,BQ, S p Z Z IL(xEG)
wE(D*)2 (y1,y2)EB1 X B2

x [m(a(z,m),z,y1) Am(cz, y2), 2, 42) ]
X [1(S = oz, 41)) g, (32) (1 — p) = 1(S = a(z,%2)) g, (11) ]

Z (S, z,y)1(z €0)
€(D*)?y,y’e(D*)?
[ (y € B1)(1 - p)as,(y') — L(y € B2)pgs, (y')]

W(a<z)y/)7xay/)
% ( m(a(z,y),z,y) A1>'




Simulations

Consider IPX', Y/|s = m,
]PY”’X/, y' = ]l(Y/ € Bi)gp, +]1(Y/ € By)gp,,

X/ Y//) X/ Y//)
X.Y)=F (W(O‘( UL bt /\1) XY,
w ) ( ta(z,Y"), X', Y |

Px vix, v =

’U}(X,, Y’)éX/, Y/ + (1 - ’U)(X/, Y/))(S(Oé(X/, Y/)7€)’€.

P, 5,0(8,p) = E[1(X € 0)[1(Y € By) — p1(Y € B)]| §|.



Statistical tests

Let & be a set of known Markov substitute sets (to start with,
we can take = {{y,},y € D}.

L =
et C} ;2%? Z]l(yeB)<oo,
Be#

Ch = max 1(z €6) < o0,
z€(D*)? cg

h(B,s) =1((s,B) # 2),
9(B,0,s) =1(3(z,y) € L(s,B) :z €0),

n -1
v(B) = 12( > h(B’,S») h(B,S),

s \prez



Statistical tests

-1

1 n
£(0|By, Be) = nz<z 9(B1U32,9/,Si)> 9(B1UBy,0,5;),

i=1 \0’e®
p(B1, B2,0) = v(B1)v(B2) (0| Br, Bz),
h(s)= > h(B,s) < CiL(s)(t(s)+1)/2,

Be#
g(s)= sup Z g(B1UBs3,0,s) < Cy £(s)(4(s)+1)/2,
BI’BQGQHE@
_ - -2 _ -1
/L(BlvBQae) >n 3(121%th(‘5’1)) (lrél%xng(sl)) H(M(BbB?ae) > 0)

>8n 3020, LT3 (L41) 73,
where L = max £(S;)

Ssn



Statistical tests

Proposition

Consider some finite set A C|0,1[. With probability at least
1—2e¢, for any A€ AU{—=A}, any p € & C [0,1], any

pE M (B x0O),

Fy(S;,p)dp(0) — W / Fy(S5,p)* dp(0)

—~ 9 #2x0
" A
< [ 3 [tog(1+ AFa(Si.p)) = £ Fo(S1,1)] d(6)
=1

< JELFo(S.9)] dp(6) +7 (p. )+ 3log(k) +log(|A]| 2] fe):



Statistical tests

Let p(Bi1,B2,0) =P(Yp,up, € Bi1| X €6, Yp,up, € BiUBy),
so that E(FBLB%Q(S,])(BMBQ,Q)) =0,

p+(B1,By) = sup{p(Bl,Bg,H) :0e€0,
P(Xp,up, €0, Y,uB, € BLUB,) > 0},
p—(B1,B2) = iﬂf{p(Bl,Bm@) 10 €0,
P(Xp,up, €0, Y,up, € BLUB,) > 0},
¥(z) =log(1+2) —z/k,



Statistical tests

We will say that (Bj, By) is an n-Markov substitute pair of sets
when B = By U By is a Markov substitute set such that

q(B1) € [n,1—n]. We will say that (Bj, B2) is a y-weak
n-Markov substitute pair of sets when

N < p—(B1,B2) < py(B1,Bz) <1—mn, and py (B, B2) —p—(B1,B2) <.



Statistical tests

Proposition

Let A be a finite subset of |0,1[. With probability at least 1 —2¢, for
any pair (B, By) € %2,

B_(p4+(B1,B2)) def sup /Zw(/\FBl,BQ,a(Sz‘,er(BL32))) dp(0)
peL(©) eN) T

—%Tmuﬁ—3bam—&%<ﬁqgghﬂ3ﬁ)SO
Bi(p_(B1,B)) < sup /Zw<—)\FBLBQ79(SZ-,p_(Bl, BQ))) dp(6)

pEML(©)XeAY 1

_xmmwm%w—mﬂwwﬁ«&0<o



Statistical tests

Therefore, if we reject the hypothesis that By U By is a Markov
substitute set when

inf B_(p).B 0
pér[})vl]maX{ (p),By(p)} >0,

the probability of making a false rejection (after testing all pairs
in %?) is at most 2.

In the same way we can reject the hypothesis that

(By, By) € %? is an n-Markov substitute pair of sets when

inf max{B_(p),B+(p)} >0,
pe[nvl—ﬁ]

with a probability of rejecting one of the true n-Markov pairs
(after testing all pairs in %2), not greater than 2¢.



Statistical tests

With probability at least 1 — 2¢, for any y-weak n-Markov
substitute pair,

inf  max{B_(p+~),B+(p)} <O0.
PEn,1-n—7]

For this test, the proability of false rejection is not greater than
2e.



Probability of false acceptance

Lemma
For any p €10,1], any XA €] —1,1], any B1, Bo € B, any 6 € O,
let r(By, B,0) = B(1(X5,0m, €0, Yp,um, € BIUB)).
With probability at least 1 —2¢,
& k—1
>0\ 20(5.9)) = log(e) = r ()| A" (= 5(6)
i=1

+ sz (k - Ly ¢(2]221>) (p(O)(1=p(9) + (p —p(9))2)},

where p(z) =2272(exp(z) — 1 - 2).




Probability of false acceptance

Let

1 - _ _
§= Elog[/ﬂg’n?’( max h(Si))(lrél%Xng(Si))\Ale 2},

1<n<n
X= sup inf cosh [log<)‘x)}’
me[(2n)—1/2,(2n)1/2}>\eA 1=\
- 1 < 4.47y® when k = 10
a k—1(+2k(k—1) < X~ when ,
2 2
po CEVIE g e k=10,

k—1



Probability of false acceptance

Let us assume that there are By, By € £, 6,,0_ € © such that
ﬁ—i— :p(3173279+)7 p_= p(BlaB%'g*)a T+ = T(BI7B270+)7 and
r_ = r(B1, Bg,0_) are such that

16 k26
S

. (1—p.)8 0 bo
_ ap+( p_,.) < a >_|_

1+—
T+ T+ T+

T_NTL >



Probability of false acceptance

With probability at least 1 — 2¢, ir[hfl] max{B_(p),B+(p)} >0,
pe b
so that the probability of false acceptance of By U By as a

Markov substitute set is at most equal to 2¢ in this case.

More precisely, with probability at least 1 — 2¢,

7.(1—p,)0 0 bo
B_<p+_ ap+7( P) <1+a>—>>07

[ T+ T+

7 (1-p_)o 5\ b3
B+<p_—|— M(1+i>+r> > 0.



Probability of false acceptance

If we assume now that

lap, (1—7,)6 bo
ﬁJr_l_‘_nZ CM<1+CMS)+,
T+ T+ T+

ap_(l—p_)6<1+a5) .y

r— (= r—

or that n—p_ >

—
ap+<p+>5<1+a5)+b5
[ T+

+ ap-(1=P-)0 (1+z5) Ly

or that p, —p_ >+



Probability of false acceptance

the false acceptance probability of the test that (B, By) € %2 is
an v-weak n-Markov substitute pair of sets is not greater than
2e.



Building syntax trees

Starting from the obvious family of Markov substitute sets
oy ={{w},w e D}, and assuming that o7, C 20" is already
constructed, consider the family of Markov sets

B ={v(e),e €}

We can use the above tests to find out new Markov substitute
sets of the form ~(e;) U~y (e2), where e;,es € o7, and add them
to 7, to form o7 1.

To compute the tests, we need to define a kernel
(n(s32,y),5 € D*,x € (D", y € y(e1) Un(en)-



Building syntax trees

To do this, we can use two kernels
(te,¢') e € 41, ¢! € o/t 1 <5 < kyy(e) CA(e)), and

(ﬁ(s, e;z,y),s € DV e€ o s € v(e), e =a(Z,7),T € (527,3‘)2,@ €
{er ez, € 4(T1) x 7(T2), v € 1(T) ).

The k th iterate of ¢, t*, builds a random syntax tree, and we
can put 7(s;z,y) = (t*7) (s;,y).

The incremental construction of 7, can be described by
rewriting rules B — e, B — €3, where B € <7, and
e1,6 € szjtl, forming a context free grammar.



Estimating the language distribution

If B is a Markov substitute set such that BNsupp(Pg) # @
then B C supp(Pg) and IPS|S c B =45

Given a collection of Markov substitute sets B;, 1 <j <t and
the above defined reversible dynamics k, we may define the
random Markov substitute sets

C;= supp(ési ij>,
§=0

and estimate IP g by

1 n
P=7 2 g



Estimating the language distribution

and consequently supp(Pg) by Ui-; .

To compute 1[s € supp (IAP)] for a given s and answer the
question : is s a sentence of the language ? we need to compute
1(s € C;). The syntax tree can help here, since

I(seC)=1 [supp (53 ikjtk> = supp (551 i K’ tk>1 .

J=0 J=0



