Markov substitute models and statistical inference in linguistics

Olivier Catoni, joint work with Thomas Mainguy CNRS, INRIA – CLASSIC Département de Mathématiques et Applications, ENS, 45 rue d'Ulm, 75 230 Paris Cedex 05, Olivier.Catoni@ens.fr

> Séminaire Parisien de Statistique, Institut Henri Poincaré, April 7, 2014

Toric grammars in action

A training sample:

1 [0 He is a clever guy . 1 [0 He is doing some shopping . 1 [0 He is laughing . 1 [0 He is not interested in sports . 1 [0 He is walking . 1 [0 He likes to walk in the streets . 1 [0 I am driving a car . 1 [0 I am riding a horse too . 1 [0 I am running . 1 [0 Paul is crossing the street . 1 [0 Paul is driving a car . 1 [0 Paul is riding a horse . 1 [0 Paul is walking . 1 [0 Peter is walking . 1 [0 While I was walking , I saw Paul crossing the street . The estimated toric grammar:

10 [0 He likes to walk]6]3 streets . 2 [0]1]8 clever guy . 2 [0]1 doing some shopping . 2 [0]1 laughing . 2 [0]1 not interested]6 sports . 2 [0]1 riding]8 horse . 2 [0]1 riding]8 horse]2 . 2 [0]1 running . 24 [0]7 am]5 . 28 [0 Paul is]5 . 40 [0 He is]5 . 4 [0]1 crossing]3 street . 4 [0]1 driving]8 car . 5 [0]4 is]5 . 6 [0]1 walking . 7 [0 Peter is]5 . 8 [0 While]7 was]5 ,]7 saw]4]5 . 10 [1 He is 2 [1 Peter is

2 [1 While]7 was]5 ,]7 saw]4 6 [1]7 am 8 [1 Paul is 2 [2 too 30 [3 the 14 [4 Paul 1 [4 Peter 16 [5 crossing]3 street 16 [5 driving]8 car 16 [5 riding]8 horse 34 [5 walking 8 [5]5 too 8 [5]8 clever guy 8 [5 doing some shopping 8 [5 laughing 8 [5 not interested]6 sports 8 [5 running 20 [6 in 50 [7 I 50 [8 a

New sentences discovered:

1 [0 Paul is driving a car too . 1 [0 Paul is doing some shopping . 1 [0 Paul is laughing . 1 [0 Paul is riding a horse too . 1 [0 Paul is running too . 1 [0 Paul is running . 1 [0 Paul is not interested in sports too . 1 [0 Paul is not interested in sports . 1 [0 Paul is a clever guy too . 1 [0 Paul is a clever guy . 1 [0 Paul is walking too . 1 [0 Peter is driving a car too . 1 [0 Peter is driving a car . 1 [0 Peter is doing some shopping . 1 [0 Peter is laughing . 1 [0 Peter is riding a horse too . 1 [0 Peter is riding a horse . 1 [0 Peter is running too . 1 [0 Peter is running . 1 [0 Peter is not interested in sports .

1 [0 Peter is a clever guy . 1 [0 Peter is crossing the street . 1 [0 He is driving a car too . 1 [0 He is driving a car . 1 [0 He is riding a horse too . 1 [0 He is riding a horse . 1 [0 He is running too . 1 [0 He is running . 1 [0 He is not interested in sports too . 1 [0 He is crossing the street too . 1 [0 He is crossing the street . 1 [0 He is walking too . 1 [0 I am driving a car too . 1 [0 I am doing some shopping . 1 [0 I am laughing too . 1 [0 I am laughing . 1 [0 I am riding a horse . 1 [0 I am not interested in sports . 1 [0 I am a clever guy . 1 [0 I am crossing the street too . 1 [0 I am crossing the street . 1 [0 I am walking too . 1 [0 I am walking .

1 [0 While I was driving a car , I saw Paul doing some shopping too . 1 [0 While I was driving a car , I saw Paul doing some shopping . 1 [0 While I was driving a car , I saw Paul riding a horse . 1 [0 While I was driving a car , I saw Paul crossing the street . 1 [0 While I was driving a car , I saw Paul walking . 1 [0 While I was driving a car , I saw Peter riding a horse . 1 [0 While I was doing some shopping , I saw Paul riding a horse . 1 [0 While I was doing some shopping , I saw Paul walking . 1 [0 While I was laughing too , I saw Peter crossing the street . 1 [0 While I was laughing , I saw Peter riding a horse . 1 [0 While I was riding a horse , I saw Paul driving a car too . 1 [0 While I was riding a horse , I saw Paul driving a car . 1 [0 While I was riding a horse , I saw Paul laughing .

1 [0 While I was riding a horse , I saw Paul running . 1 [0 While I was riding a horse , I saw Paul walking . 1 [0 While I was riding a horse , I saw Peter not interested in sports . 1 [0 While I was running , I saw Paul laughing . 1 [0 While I was running , I saw Paul not interested in sports . 1 [0 While I was running , I saw Paul a clever guy . 1 [0 While I was running , I saw Paul walking . 1 [0 While I was not interested in sports , I saw Paul driving a car . 1 [0 While I was not interested in sports , I saw Paul riding a horse . 1 [0 While I was a clever guy , I saw Paul running . 1 [0 While I was a clever guy , I saw Paul crossing the street . 1 [0 While I was a clever guy , I saw Paul walking . 1 [0 While I was crossing the street , I saw Paul riding a horse . 1 [0 While I was crossing the street , I saw Paul running . 1 [0 While I was crossing the street , I saw Paul crossing the street . 1 [0 While I was crossing the street , I saw Paul walking . 1 [0 While I was crossing the street , I saw Peter walking . 1 [0 While I was walking , I saw Paul driving a car . 1 [0 While I was walking , I saw Paul laughing . 1 [0 While I was walking , I saw Paul riding a horse . 1 [0 While I was walking , I saw Paul running . 1 [0 While I was walking , I saw Paul not interested in sports . 1 [0 While I was walking , I saw Paul crossing the street too . 1 [0 While I was walking , I saw Paul walking . 1 [0 While I was walking , I saw Peter not interested in sports . 1 [0 While I was walking , I saw Peter walking .

Let D be a dictionary of words, $D^+ = \bigcup_{j=1}^{\infty} D^j$ the set of finite sequences of words and $D^* = \{ \varepsilon \} \cup D^+$ the set of possibly empty finite sequences of words.

Let $S \in D^+$ be a random sentence, and $(S_i, 1 \leq i \leq n)$ a sample of n independent copies of S.

Given a context $x = (x_1, x_2) \in (D^*)^2$, and an expression $y \in D^+$, we define the insertion operator

$$
\alpha(x, y) = x_1 y x_2 \in D^+,
$$

that inserts the expression y in the context x .

Definition

A subset $B \subset D^+$ is a Markov substitute set for S when there is a probability measure $q_B \in \mathcal{M}^1_+(B)$ on B (called the substitute measure) such that for any context $x \in (D^*)^2$ and any $y \in B$,

$$
\mathbb{P}\big[S=\alpha(x,y)\big]=\mathbb{P}\big[S\in \alpha(x,B)\big]\,q_B(y),
$$

where $\alpha(x, B) = {\alpha(x, y), y \in B}.$

In simple words, the conditional distribution of y in context x is independent of the context x .

Equivalently, for any $x, x' \in (D^*)^2$, any $y, y' \in B$,

$$
\mathbb{P}_{S}(x_1 \, y \, x_2) \mathbb{P}_{S}(x'_1 \, y' \, x'_2) = \mathbb{P}_{S}(x_1 \, y' \, x_2) \mathbb{P}_{S}(x'_1 \, y \, x'_2).
$$

(The model could be broaden further by imposing restrictive $conditions \text{ on the context } x.$)

Markov chains are a special case of Markov substitute models

If $S = (Z_1, \ldots, Z_L)$, where $(Z_t, t \in \mathbb{N})$ is a Markov chain, then for any $x = (w_1, w_2) \in D^2$, $\alpha(x, D)$ is a Markov substitute set.

If $S = (Z_1, \ldots, Z_{\tau})$, where τ is the first hitting time of $C \subset D$, then for any $x = (x_1, x_2) \in (D^+)^2$, any $B \subset (D \setminus C)^+$, $\alpha(x, B)$ is a Markov substitute set.

Basic properties of Markov substitute sets

Any one point set $\{y\}, y \in D^+$, is a Markov substitute set.

A subset of a Markov substitute set is itself a Markov substitute set.

If B and C are Markov sets such that $B \cap C \neq \emptyset$, $B \cup C$ is also a Markov substitute set.

The relation

 $y \sim y' \iff \{y, y'\}$ is a Markov substitute pair

is an equivalence relation and D^+/\sim forms a partition of D^+ into maximal Markov substitute sets.

Basic properties of Markov substitute sets

The set B is Markov if and only if there is a connected undirected spanning graph $\mathscr{G} \subset B^2$ such that for any $(y, y') \in \mathscr{G}$, $\{y, y'\}$ is a Markov substitute pair.

If $B_j, 1 \leq j \leq \ell$ are Markov substitute sets (including possibly some one point sets), then

$$
\gamma(B_1 \dots B_\ell) = \{ s = y_1 \dots y_\ell : y_j \in B_j, 1 \le j \le \ell \}
$$

is also a Markov substitute set, and

 $q_B(y_1 \ldots y_\ell) = C_B \prod q_{B_j}(y_j)$, where C_B is a suitable normalizing ℓ $i = 1$ constant. (The map $(y_1, y_\ell) \mapsto y_1 \dots y_\ell$ may not be one to one, in which case C_B may be different from one!)

Characterization of Markov substitute sets in terms of random parsing

Let $B \subset D^+$ be some subset.

Let us define the set of splits of any sentence $s \in D^+$ as

$$
\mathscr{S}(s,B) = \{(x,y), x \in (D^*)^2, y \in B, \alpha(x,y) = s\}.
$$

Let us consider some conditional probability kernel $(\pi(s; x, y), s \in D^+, x \in (D^*)^2, y \in B \cup \{\epsilon\})$ such that

$$
\mathscr{S}(s,B) \subset \mathrm{supp}(\pi(s;\cdot)) \subset \mathscr{S}(s,B) \cup \{((s,\varepsilon),\varepsilon)\}.
$$

We can for instance take $\pi(s; x, y) = |\mathscr{S}(s, B)|^{-1}$, $(x, y) \in \mathscr{S}(s, B).$

Let us define the random B-parse X, Y of the random sentence S on the same probability space by its conditional distribution

$$
\mathbb{P}_{X, Y|S=s}(x, y)
$$
\n
$$
= \begin{cases}\n\min_{y' \in B} \pi(\alpha(x, y'), x, y'), & (x, y) \in \mathcal{S}(s, B), \\
1 - \sum_{(x', y') \in \mathcal{S}(s, B)} \mathbb{P}_{X, Y|S=s}(x', y'), & x = (s, \epsilon), y = \epsilon.\n\end{cases}
$$

Lemma

The set B is a Markov substitute set for S if and only if one of the following equations is true

$$
\mathbb{P}_{X, Y|Y \in B} = \mathbb{P}_{X|Y \in B} \otimes \mathbb{P}_{Y|Y \in B},
$$

\n
$$
\mathbb{P}_{X|Y = y} = \mathbb{P}_{X|Y = y'}, \qquad y, y' \in B,
$$

\n
$$
\mathbb{P}_{Y|X = x, Y \in B} = \mathbb{P}_{Y|Y \in B}
$$

Let $(B_j, 1 \leq j \leq t)$ be a family of Markov substitute sets.

Let us consider a conditional probability kernel $(\pi(s; x, y, j) : s \in$ $D^+, x \in (D^*)^2, 1 \leq j \leq t, y \in B_j \cup \{\varepsilon\}, \alpha(x, y) = s).$

The kernel $(k(s, s') : s, s' \in D^+)$, defined as

$$
k(s,s') = \begin{cases} \sum_{\substack{x \in (D^*)^2, \\ (y,y') \in (D^*)^2, j}} \pi(s;x,y,j) q_{B_j}(y') \left(\frac{\pi(s',x,y',j)}{\pi(s,x,y,j)} \wedge 1 \right), & s \neq s', \\ 1 - \sum_{s'' \in D^+ \setminus \{s\}} k(s,s''), & s' = s, \end{cases}
$$

is reversible with respect to \mathbb{P}_S .

$$
\mathbb{P}_{S}(s)k(s,s') = \sum_{\substack{x \in (D^*)^2, \\ (y,y') \in (D^*)^2, j}} \mathbb{P}_{S}(\alpha(x,B_j))
$$

\$\times q_{B_j}(y)q_{B_j}(y')[\pi(s;x,y,j) \wedge \pi(s';x,y',j)]\$
= $\mathbb{P}_{S}(s')k(s',s).$

If $k(y, y') > 0$, $\{y, y'\}$ is a Markov substitute pair and $q_{\{y,y'\}}(y)k(y,y') = q_{\{y,y'\}}(y')k(y',y).$

For any Markov substitute set B , (including one point sets), $\text{supp}(\sum_{n=1}^{\infty}$ $t=0$ $q_B k^t$ is a Markov substitute set.

The communicating classes $\left\{\text{supp} \left(\sum_{n=1}^{\infty} \right) \right\}$ $t=0$ $\delta_s k^t$ $, s \in D^+$ forms a

partition of D^+ into Markov substitute sets.

For any domain $\mathscr{D} \subset D^+$, the reflected dynamics

$$
k_{\mathscr{D}}(s,s') = \begin{cases} k(s,s'), & s,s' \in \mathscr{D}, s \neq s', \\ 0, & s' \notin \mathscr{D} \cup \{s\}, \\ 1 - \sum_{s'' \neq s} k(s,s''), & \text{otherwise.} \end{cases}
$$

is reversible with respect to \mathbb{P}_S .

Let us consider a family Θ of subsets $\theta \subset (D^*)^2$, containing all the one point sets $\{x\}, x \in (D^*)^2$.

For any pair B_1 , B_2 of Markov substitute sets, such that $B_1 \cap B_2 = \emptyset$. let us put $B = B_1 \cup B_2$ and let us consider some B-parse process (X_B, Y_B) and the random variables

$$
F_{B_1,B_2,\theta}(X_B, Y_B, p)
$$

= 1(X_B \in θ)[1(Y_B \in B₁) - p 1(Y_B \in B)], $\theta \in \Theta, p \in [0,1].$

The set B is a Markov substitute set if and only if there is $p \in [0,1]$ such that for any $\theta \in \Theta$, $\mathbb{E}[F_{B_1,B_2,\theta}(X_B, Y_B, p)] = 0$. In this case $q_B (B_1) = p$.

To estimate $\mathbb{E}[F_{B_1,B_2,\theta}(X_B,Y_B,p)]$, we can simulate from the sample $(S_i, 1 \leq i \leq n)$ an i.i.d. sample $(S_i, X_{B,i}, Y_{B,i})$ such that $\mathbb{P}_{X_{B,i}, Y_{B,i}|S_i} = \mathbb{P}_{X_B, Y_B|S}$, or we can compute

$$
F_{B_1, B_2, \theta}(s, p) \stackrel{\text{def}}{=} \mathbb{E}[F_{B_1, B_2, \theta}(X_B, Y_B, \theta)|S = s]
$$

=
$$
\sum_{x \in (D^*)^2} \sum_{y \in B} \mathbb{1}(x \in \theta) \min_{y' \in B} \pi(\alpha(x, y'), x, y')
$$

$$
\times [\mathbb{1}(y \in B_1) - p\mathbb{1}(y \in B)] \mathbb{1}(s = \alpha(x, y)),
$$

and consider the i.i.d. samples $F_{B_1,B_2,\theta}(S_i,p)$.

Alternative test functions

Another choice of test functions is

$$
F_{B_1, B_2, \theta}(S, p) = \sum_{x \in (D^*)^2} \sum_{(y_1, y_2) \in B_1 \times B_2} \mathbb{1}(x \in \theta)
$$

\$\times [\pi(\alpha(x, y_1), x, y_1) \land \pi(\alpha(x, y_2), x, y_2)]\$
\$\times [\mathbb{1}(S = \alpha(x, y_1)) q_{B_2}(y_2)(1 - p) - \mathbb{1}(S = \alpha(x, y_2)) q_{B_1}(y_1)p]\$
=
$$
\sum_{x \in (D^*)^2} \sum_{y, y' \in (D^*)^2} \pi(S, x, y) \mathbb{1}(x \in \theta)
$$

\$\times [\mathbb{1}(y \in B_1)(1 - p) q_{B_2}(y') - \mathbb{1}(y \in B_2) p q_{B_1}(y')]\$
\$\times \left(\frac{\pi(\alpha(x, y'), x, y')}{\pi(\alpha(x, y), x, y)} \land 1 \right).

Simulations

Consider
$$
\mathbb{P}_{X', Y'|S} = \pi
$$
,
\n $\mathbb{P}_{Y''|X', Y'} = \mathbb{1}(Y' \in B_1)q_{B_2} + \mathbb{1}(Y' \in B_2)q_{B_1},$
\n $w(X', Y') = \mathbb{E}\left(\left(\frac{\pi(\alpha(X', Y''), X', Y'')}{\pi(\alpha(x', Y'), X', Y')}\wedge 1\right)|X', Y'\right),$

$$
\mathbb{P}_{X, Y|X', Y'} =
$$

\n
$$
w(X', Y')\delta_{X', Y'} + (1 - w(X', Y'))\delta_{(\alpha(X', Y'), \epsilon), \epsilon}.
$$

\n
$$
F_{B_1, B_2, \theta}(S, p) = \mathbb{E}[\mathbb{1}(X \in \theta)[\mathbb{1}(Y \in B_1) - p\mathbb{1}(Y \in B)] | S].
$$

Let $\mathscr B$ be a set of known Markov substitute sets (to start with, we can take $\mathscr{B} = \{\{y, \}, y \in D\}.$

Let
$$
C_1 = \max_{y \in D^+} \sum_{B \in \mathcal{B}} 1(y \in B) < \infty
$$
,
\n
$$
C_2 = \max_{x \in (D^*)^2} \sum_{\theta \in \Theta} 1(x \in \theta) < \infty
$$
\n
$$
h(B, s) = 1(\mathcal{S}(s, B) \neq \emptyset),
$$
\n
$$
g(B, \theta, s) = 1(\exists (x, y) \in \mathcal{S}(s, B) : x \in \theta),
$$
\n
$$
\nu(B) = \frac{1}{n} \sum_{i=1}^n \left(\sum_{B' \in \mathcal{B}} h(B', S_i) \right)^{-1} h(B, S_i),
$$

Statistical tests

$$
\xi(\theta|B_1, B_2) = \frac{1}{n} \sum_{i=1}^n \left(\sum_{\theta' \in \Theta} g(B_1 \cup B_2, \theta', S_i) \right)^{-1} g(B_1 \cup B_2, \theta, S_i),
$$

\n
$$
\mu(B_1, B_2, \theta) = \nu(B_1)\nu(B_2)\mu(\theta|B_1, B_2),
$$

\n
$$
\overline{h}(s) = \sum_{B \in \mathscr{B}} h(B, s) \le C_1 \ell(s)(\ell(s) + 1)/2,
$$

\n
$$
\overline{g}(s) = \sup_{B_1, B_2 \in \mathscr{B}} \sum_{\theta \in \Theta} g(B_1 \cup B_2, \theta, s) \le C_2 \ell(s)(\ell(s) + 1)/2,
$$

\n
$$
\mu(B_1, B_2, \theta) \ge \underbrace{n^{-3} (\max_{1 \le i \le n} \overline{h}(S_i))^{-2} (\max_{1 \le i \le n} \overline{g}(S_i))^{-1} \mathbb{1}(\mu(B_1, B_2, \theta) > 0)}_{1 \le i \le n}.
$$

\n
$$
\ge 8n^{-3} C_1^{-2} C_2^{-1} L^{-3} (L + 1)^{-3},
$$

\nwhere $L = \max_{1 \le i \le n} \ell(S_i)$

Proposition

Consider some finite set $\Lambda \subset]0,1[$. With probability at least $1-2\varepsilon$, for any $\lambda \in \Lambda \cup \{-\Lambda\}$, any $p \in \mathscr{P} \subset [0,1]$, any $\rho \in \mathcal{M}^1_+(\mathscr{B}^2\times \Theta),$

$$
\sum_{i=1}^{n} \frac{(k-1)\lambda}{k} \int_{\theta \in \mathcal{B}^2 \times \Theta} F_{\theta}(S_i, p) d\rho(\theta) - \frac{\lambda^2}{2(1-|\lambda|)^2} \int F_{\theta}(S_i, p)^2 d\rho(\theta)
$$

$$
\leq \int \sum_{i=1}^{n} \left[\log(1 + \lambda F_{\theta}(S_i, p)) - \frac{\lambda}{k} F_{\theta}(S_i, p) \right] d\rho(\theta)
$$

$$
\leq \frac{(k-1)n\lambda}{k} \int \mathbb{E} \left[F_{\theta}(S, p) \right] d\rho(\theta) + \mathcal{K}(\rho, \mu) + 3 \log(k) + \log(|\Lambda| |\mathcal{P}|/\varepsilon).
$$

Let
$$
p(B_1, B_2, \theta) = \mathbb{P}(Y_{B_1 \cup B_2} \in B_1 | X \in \theta, Y_{B_1 \cup B_2} \in B_1 \cup B_2),
$$

so that $\mathbb{E}(F_{B_1, B_2, \theta}(S, p(B_1, B_2, \theta)) = 0,$
 $p_+(B_1, B_2) = \sup \{ p(B_1, B_2, \theta) : \theta \in \Theta,$
 $\mathbb{P}(X_{B_1 \cup B_2} \in \theta, Y_{B_1 \cup B_2} \in B_1 \cup B_2) > 0 \},$
 $p_-(B_1, B_2) = \inf \{ p(B_1, B_2, \theta) : \theta \in \Theta,$
 $\mathbb{P}(X_{B_1 \cup B_2} \in \theta, Y_{B_1 \cup B_2} \in B_1 \cup B_2) > 0 \},$
 $\psi(z) = \log(1 + z) - z/k,$

We will say that (B_1, B_2) is an *η*-Markov substitute pair of sets when $B = B_1 \cup B_2$ is a Markov substitute set such that $q_B(B_1) \in [\eta, 1-\eta]$. We will say that (B_1, B_2) is a γ -weak *η*-Markov substitute pair of sets when

 $\eta \leq p_-(B_1, B_2) \leq p_+(B_1, B_2) \leq 1 - \eta$, and $p_+(B_1, B_2) - p_-(B_1, B_2) \leq \gamma$.

Proposition

Let Λ be a finite subset of]0*,*1[. With probability at least 1−2*ε*, for any pair $(B_1, B_2) \in \mathcal{B}^2$,

$$
B_{-}(p_{+}(B_{1},B_{2})) \stackrel{\text{def}}{=} \sup_{\rho \in \mathcal{M}_{+}^{1}(\Theta),\lambda \in \Lambda} \int \sum_{i=1}^{n} \psi\Big(\lambda F_{B_{1},B_{2},\theta}\big(S_{i},p_{+}(B_{1},B_{2})\big)\Big) d\rho(\theta)
$$

$$
- \mathcal{K}(\rho,\mu_{1}) - 3\log(k) - \log\Big(\frac{|\Lambda|}{\varepsilon\nu_{1}(B_{1})\nu_{1}(B_{2})}\Big) \leq 0
$$

$$
B_{+}(p_{-}(B_{1},B_{2})) \stackrel{\text{def}}{=} \sup_{\rho \in \mathcal{M}_{+}^{1}(\Theta),\lambda \in \Lambda} \int \sum_{i=1}^{n} \psi\Big(-\lambda F_{B_{1},B_{2},\theta}\big(S_{i},p_{-}(B_{1},B_{2})\big)\Big) d\rho(\theta)
$$

$$
- \mathcal{K}(\rho,\mu_{1}) - 3\log(k) - \log\Big(\frac{|\Lambda|}{\varepsilon\nu_{1}(B_{1})\nu_{1}(B_{2})}\Big) \leq 0
$$

Therefore, if we reject the hypothesis that $B_1 \cup B_2$ is a Markov substitute set when

$$
\inf_{p \in [0,1]} \max\{B_-(p), B_+(p)\} > 0,
$$

the probability of making a false rejection (after testing all pairs in \mathscr{B}^2) is at most 2ε .

In the same way we can reject the hypothesis that $(B_1, B_2) \in \mathcal{B}^2$ is an *η*-Markov substitute pair of sets when

$$
\inf_{p \in [\eta, 1 - \eta]} \max\{B_-(p), B_+(p)\} > 0,
$$

with a probability of rejecting one of the true *η*-Markov pairs (after testing all pairs in \mathscr{B}^2), not greater than 2ε .

With probability at least 1−2, for any *γ*-weak *η*-Markov substitute pair,

$$
\inf_{p\in [\eta,1-\eta-\gamma]}\max\bigl\{B_-(p+\gamma),B_+(p)\bigr\}\leq 0.
$$

For this test, the proability of false rejection is not greater than 2*ε*.

Lemma

For any $p \in [0,1]$, any $\lambda \in]-1,1[$, any $B_1, B_2 \in \mathscr{B}$, any $\theta \in \Theta$, $let \ r(B_1, B_2, \theta) = \mathbb{E} \Big(\mathbb{1}(X_{B_1 \cup B_2} \in \theta, Y_{B_1 \cup B_2} \in B_1 \cup B_2) \Big).$ With probability at least $1-2\varepsilon$,

$$
\sum_{i=1}^{n} \psi(\lambda F_{B_1, B_2, \theta}(S, p)) \ge \log(\varepsilon) - nr(\theta) \left[\lambda \frac{k-1}{k} (p - p(\theta)) + \frac{\lambda^2}{1 - |\lambda|} \left(\frac{k-1}{k} + \frac{\varphi(k^{-1})}{2k^2} \right) \left(p(\theta) (1 - p(\theta)) + (p - p(\theta))^2 \right) \right],
$$

where $\varphi(z) = 2z^{-2}(\exp(z) - 1 - z)$.

Probability of false acceptance

Let

$$
\delta = \frac{1}{n} \log \left[k^3 n^3 \left(\max_{1 \le n \le n} \overline{h}(S_i) \right) \left(\max_{1 \le i \le n} \overline{g}(S_i) \right) |\Lambda| \varepsilon^{-2} \right],
$$

\n
$$
\chi = \sup_{x \in [(2n)^{-1/2}, (2n)^{1/2}]} \inf_{\lambda \in \Lambda} \cosh \left[\log \left(\frac{\lambda x}{1 - \lambda} \right) \right],
$$

\n
$$
a = \frac{4\chi^2 k}{k - 1} \left(1 + \frac{\varphi(k^{-1})}{2k(k - 1)} \right) \le 4.47 \chi^2 \text{ when } k = 10,
$$

\n
$$
b = \frac{(2 + \sqrt{2})k}{k - 1} \le 3.8 \text{ when } k = 10.
$$

Let us assume that there are $B_1, B_2 \in \mathcal{B}, \theta_+, \theta_- \in \Theta$ such that $\overline{p}_+ = p(B_1, B_2, \theta_+), \overline{p}_- = p(B_1, B_2, \theta_-), r_+ = r(B_1, B_2, \theta_+),$ and $r_$ = $r(B_1, B_2, \theta_+)$ are such that

$$
\begin{aligned}\n r_- \wedge r_+ &\geq \frac{16 \, k \, \chi^2 \delta}{k-1}, \\
 \overline{p}_+ - \overline{p}_- &\geq \sqrt{\frac{a \, \overline{p}_+ (1-\overline{p}_+) \delta}{r_+}} \bigg(1 + \frac{a \delta}{r_+}\bigg) + \frac{b \, \delta}{r_+} \\
 &\quad + \sqrt{\frac{a \overline{p}_- (1-\overline{p}_-) \delta}{r_-}} \bigg(1 + \frac{a \, \delta}{r_-}\bigg) + \frac{b \, \delta}{r_-}.\n \end{aligned}
$$

With probability at least $1-2\varepsilon$, $\inf_{p\in[0,1]} \max\{B_-(p), B_+(p)\} > 0$, so that the probability of false acceptance of $B_1 \cup B_2$ as a Markov substitute set is at most equal to 2ϵ in this case.

More precisely, with probability at least $1 - 2\varepsilon$,

$$
\begin{split} & B_- \bigg(\overline{p}_+ - \sqrt{\frac{a \overline{p}_+ (1- \overline{p}_+) \delta}{r_+}} \bigg(1 + \frac{a \delta}{r_+} \bigg) - \frac{b \delta}{r_+} \bigg) > 0, \\ & B_+ \bigg(\overline{p}_- + \sqrt{\frac{a \overline{p}_- (1- \overline{p}_-) \delta}{r_-}} \bigg(1 + \frac{a \delta}{r_-} \bigg) + \frac{b \delta}{r_-} \bigg) > 0. \end{split}
$$

Probability of false acceptance

If we assume now that

$$
\overline{p}_{+} - 1 + \eta \ge \sqrt{\frac{a\overline{p}_{+}(1-\overline{p}_{+})\delta}{r_{+}}} \left(1 + \frac{a\delta}{r_{+}}\right) + \frac{b\delta}{r_{+}},
$$
\n
$$
\text{or that } \eta - \overline{p}_{-} \ge \sqrt{\frac{a\overline{p}_{-}(1-\overline{p}_{-})\delta}{r_{-}}} \left(1 + \frac{a\delta}{r_{-}}\right) + \frac{b\delta}{r_{-}},
$$
\n
$$
\text{or that } \overline{p}_{+} - \overline{p}_{-} \ge \gamma + \sqrt{\frac{a\overline{p}_{+}(1-\overline{p}_{+})\delta}{r_{+}}} \left(1 + \frac{a\delta}{r_{+}}\right) + \frac{b\delta}{r_{+}}
$$
\n
$$
+ \sqrt{\frac{a\overline{p}_{-}(1-\overline{p}_{-})\delta}{r_{-}}} \left(1 + \frac{a\delta}{r_{-}}\right) + \frac{b\delta}{r_{-}}.
$$

the false acceptance probability of the test that $(B_1, B_2) \in \mathcal{B}^2$ is an *γ*-weak *η*-Markov substitute pair of sets is not greater than 2ϵ .

Starting from the obvious family of Markov substitute sets $\mathscr{A}_0 = \{ \{w\}, w \in D \},\$ and assuming that $\mathscr{A}_k \subset 2^{D^+}$ is already constructed, consider the family of Markov sets $\mathscr{B} = \{ \gamma(e), e \in \mathscr{A}_k^+ \}.$

We can use the above tests to find out new Markov substitute sets of the form $\gamma(e_1) \cup \gamma(e_2)$, where $e_1, e_2 \in \mathscr{A}_k^+$, and add them to \mathscr{A}_k to form \mathscr{A}_{k+1} .

To compute the tests, we need to define a kernel $(\pi(s; x, y), s \in D^+, x \in (D^*)^2, y \in \gamma(e_1) \cup \gamma(e_2)).$

Building syntax trees

To do this, we can use two kernels
\n
$$
(t(e, e'), e \in \mathscr{A}_{j-1}^+, e' \in \mathscr{A}_j^+, 1 \leq j \leq k, \gamma(e) \subset \gamma(e')),
$$
 and
\n $(\overline{\pi}(s, e; x, y), s \in D^+, e \in \mathscr{A}_k^+, s \in \gamma(e), e = \alpha(\overline{x}, \overline{y}), \overline{x} \in (\mathscr{A}_k^*)^2, \overline{y} \in$
\n $\{e_1, e_2\}, x \in \gamma(\overline{x}_1) \times \gamma(\overline{x}_2), y \in \gamma(\overline{y})\}.$

The k th iterate of t, t^k , builds a random syntax tree, and we can put $\pi(s; x, y) = (t^k \overline{\pi})(s; x, y).$

The incremental construction of \mathscr{A}_k can be described by rewriting rules $B \to e_1, B \to e_2$, where $B \in \mathscr{A}_j$, and $e_1, e_2 \in \mathscr{A}_{j-1}^+$, forming a context free grammar.

Estimating the language distribution

If B is a Markov substitute set such that $B \cap \text{supp}(\mathbb{P}_S) \neq \emptyset$, then $B \subset \text{supp}(\mathbb{P}_S)$ and $\mathbb{P}_S|S \in B = q_B$.

Given a collection of Markov substitute sets B_j , $1 \leq j \leq t$ and the above defined reversible dynamics k , we may define the random Markov substitute sets

$$
C_i = \text{supp} \bigg(\delta_{S_i} \sum_{j=0}^{\infty} k^j \bigg),
$$

and estimate \mathbb{P}_S by

$$
\widehat{\mathbb{P}} = \frac{1}{n} \sum_{i=1}^{n} q_{C_i},
$$

and consequently supp (\mathbb{P}_S) by $\bigcup_{i=1}^n C_i$.

To compute $\mathbb{1}[s \in \text{supp}(\widehat{\mathbb{P}})]$ for a given s and answer the question : is s a sentence of the language ? we need to compute $\mathbb{1}(s \in C_i)$. The syntax tree can help here, since

$$
\mathbb{1}(s \in C_i) = \mathbb{1}\left[\mathrm{supp}\left(\delta_s \sum_{j=0}^{\infty} k^j t^k\right) = \mathrm{supp}\left(\delta_{S_i} \sum_{j=0}^{\infty} k^j t^k\right)\right].
$$